We've noticed that you're using an ad blocker

Our content is brought to you free of charge because of the support of our advertisers. To continue enjoying our content, please turn off your ad blocker.

It's off now Dismiss How do I disable my ad blocker?
❌

How to disable your ad blocker for our site:

Adblock / Adblock Plus
  • Click on the AdBlock / AdBlock Plus icon on the top right of your browser.
  • Click “Don’t run on pages on this domain.” OR “Enabled on this site.”
  • Close this help box and click "It's off now".
Firefox Tracking Prevention
  • If you are Private Browsing in Firefox, "Tracking Protection" may casue the adblock notice to show. It can be temporarily disabled by clicking the "shield" icon in the address bar.
  • Close this help box and click "It's off now".
Ghostery
  • Click the Ghostery icon on your browser.
  • In Ghostery versions < 6.0 click “Whitelist site.” in version 6.0 click “Trust site.”
  • Close this help box and click "It's off now".
uBlock / uBlock Origin
  • Click the uBlock / uBlock Origin icon on your browser.
  • Click the “power” button in the menu that appears to whitelist the current website
  • Close this help box and click "It's off now".
  • ONCOLOGY
  • News
  • Blogs
  • Topics
  • Hematology
  • Image IQ
  • Podcasts
  • Videos
  • Slideshows
  • Conferences

Modern Medicine Network
  • Login
  • Register
Skip to main content
Modern Medicine Network
  • Login
  • Register
Menu
User
Home
  • ONCOLOGY
  • News
  • Blogs
  • Topics
  • Hematology
  • Image IQ
  • Podcasts
  • Videos
  • Slideshows
  • Conferences

SUBSCRIBE: Print / eNewsletter

Diagnosis of Invasive Lobular Carcinoma in a Young Woman Presenting With Pleomorphic Lobular Carcinoma in Situ on Core Biopsy

  • Nicole Kounalakis, MD
  • Jennifer Diamond, MD
  • Kyle Rusthoven, MD
  • Wendy Horn, MD
  • Sonali Jindal, MD
  • Josh Wisell, MD
  • Catherine E. Klein, MD
  • Anthony D. Elias, MD
  • Christina A. Finlayson, MD
  • Virginia F. Borges, MD, MMSc
Apr 16, 2011
Volume: 
25
Issue: 
4
  • Breast Cancer, Oncology Journal, Ovarian Cancer
SECOND OPINION
Multidisciplinary Consultations on Challenging Cases

The University of Colorado Denver School of Medicine faculty hold weekly second opinion conferences focusing on cancer cases that represent most major cancer sites. Patients seen for second opinions are evaluated by an oncologic specialist. Their history, pathology, and radiographs are reviewed during the multidisciplinary conference, and then specific recommendations are made. These cases are usually challenging, and these conferences provide an outstanding educational opportunity for staff, fellows, and residents in training.

The second opinion conferences include actual cases from genitourinary, lung, melanoma, breast, neurosurgery, gastrointestinal, and medical oncology. On an occasional basis, ONCOLOGY will publish the more interesting case discussions and the resultant recommendations. We would appreciate your feedback; please contact us at second.opinion@uchsc.edu.

E. David Crawford, MD
Thomas W. Flaig, MD
Guest Editors

University of Colorado Denver School of Medicine
and University of Colorado Cancer Center
Aurora, Colorado

A 40-year-old premenopausal woman with a new diagnosis of invasive lobular carcinoma occurring in a background of lobular carcinoma in situ presents to a multidisciplinary second opinion clinic. Herein, we describe the appropriate management of both noninvasive and invasive lobular carcinoma and provide a literature-based review of this controversial topic.

Case Presentation

DR. NICOLE KOULANAKIS, surgical oncologist: The patient presented for baseline screening mammogram and was found to have a suspicious area of calcifications in the upper outer quadrant of her right breast (Figures 1 and 2). Stereotactic core needle biopsy revealed pleomorphic lobular carcinoma in situ (LCIS). Her history and physical exam were unremarkable. Family history was significant for two paternal cousins diagnosed with breast cancer in their 50s and a paternal uncle with a “stomach cancer.” The patient underwent a follow-up stereotactic guided biopsy which revealed a 7-mm focus of ER-positive, PR-negative, HER2/neu-negative invasive pleomorphic lobular carcinoma in the setting of diffuse LCIS (Figures 3 and 4). After discussion of her treatment and future cancer-prevention options, the patient elected to undergo bilateral mastectomies, right axillary sentinel lymph node biopsy, and immediate reconstruction. The final pathology demonstrated multiple foci of LCIS present in both mastectomy specimens, and no additional invasive cancer. The sentinel lymph nodes were negative for any metastatic disease.

FIGURE 1 Craniocaudal view of right breast mammogram.
FIGURE 2 Mediolateral view of right breast mammogram
FIGURE 3 Invasive lobular carcinoma
FIGURE 4 Lobular carcinoma in situ

This case brings up the role of LCIS in breast cancer diagnosis, management, and prevention, as well as the unique histologic subtype of pleomorphic lobular carcinomas. Let's start by discussing LCIS, a continuing conundrum in breast cancer.

How Is LCIS Diagnosed?

DR. WENDY HORN, mammographer: LCIS is a clinically and radiographically occult tumor. Detection usually occurs as an incidental finding during surgery, although increased use of mammographic screening has led to a greater identification on core needle biopsy. The incidence of LCIS is low: < 5% of all surgical excisions and approximately 3% of all core needle biopsies are diagnosed as LCIS.[1,2]

DR. NICOLE KOULANAKIS: Although LCIS is usually radiographically silent, are there any specific lesions on mammography associated with LCIS? What is the role of MRI in detection, and of surveillance after the diagnosis is made?

DR. WENDY HORN: Despite its predominantly occult nature, LCIS has been shown to be associated with mammographic calcifications, and radiologic-pathologic concordance must be established after every biopsy.[3,4] Mammographic findings occur more commonly with the pleomorphic variant of LCIS, given its tendency to undergo comedo necrosis and thus form calcifications.[5] This was the case with our patient: she underwent a stereotactic biopsy for abnormal calcifications found on a screening mammogram, which led to her diagnosis of pleomorphic LCIS.

There are no specific findings of LCIS on MRI. Currently, MRI is recommended for screening only in women with a greater than 20% lifetime risk of breast cancer. There are several high-risk groups for which data are insufficient to recommend for or against MRI screening. These are women with a history of breast cancer, ductal or lobular in situ disease, or atypical hyperplasia, and those with dense breasts on mammogram.[6] The presence of atypia, LCIS, or markedly dense breasts can be taken into account when calculating lifetime risk of breast cancer, and so may contribute to the breast cancer risk estimate of greater than 20% for a woman.

DR. NICOLE KOULANAKIS: LCIS is characterized as an indolent disease found predominantly in premenopausal women 40–50 years old. Interestingly, the incidence of LCIS in postmenopausal women has been steadily rising.[7] Older women also have a greater risk of developing a subsequent cancer once they have been diagnosed with LCIS.[8] More than 50% of patients diagnosed with LCIS will have multicentric ipsilateral involvement, and approximately 30% will have contralateral LCIS.[4] This supports the findings in our patient, although the clinical impact of multicentric and contralateral LCIS remains unclear.

How Does LCIS Differ Pathologically From Atypical Lobular Hyperplasia and Invasive Lobular Carcinoma?

DR. SONALI JINDAL AND DR. JOSH WISELL, pathologists: Lobular malignancy represents a spectrum of disease varying from noninvasive lobular proliferations, including atypical lobular hyperplasia (ALH) and LCIS, to invasive lobular carcinoma (ILC).

In ALH, neoplastic cells replace the normal epithelium of a terminal ductal lobular unit, often a relatively subtle finding. With progression to LCIS, the neoplastic proliferation increases and the changes become more prominent, expanding the lobules and extending into larger ducts, but still constrained by a basement membrane. ILC results once the neoplastic cells have extended beyond the basement membrane.

There are two known histologic types of LCIS. The “classic” variant demonstrates small cells with scant cytoplasm and small, round nuclei that lack nucleoli. The more aggressive “pleomorphic” variant has abundant cytoplasm, large variably shaped nuclei, and more prominent nucleoli. As explained earlier in the case discussion, this variant is more likely to undergo comedo necrosis, form calcifications, and be detected on screening mammograms.

Recent investigation has indicated that ILC advances from ALH/LCIS, as they all share a common molecular profile: ER/PR positive, HER2/neu negative, cytokeratin positive, and loss of E-cadherin.[9,10] The risk of progression of LCIS to invasive cancer of either the ductal or lobular type varies from 23%–36% in reported studies, with most demonstrating predominance toward development of ILC.[4,5]

The loss of heterozygosity at 11q13 in LCIS may be a marker for increased risk of developing invasive cancer and may prove to be a useful prognostic tool in the future.[11] Further understanding of the lobular neoplastic spectrum is required to permit improved identification and treatment of noninvasive lesions with greater malignant potential.

DR. VIRGINIA BORGES: What should the surgical management of LCIS be?

Surgical Management of LCIS

DR. NICOLE KOULANAKIS AND DR. CHRISTINA FINLAYSON: The surgical management of LCIS differs based on how the diagnosis is made. When LCIS is diagnosed as an incidental finding on a surgical excision, additional surgery is not indicated. We do not advocate negative margin resection for LCIS. It is well understood that in patients with invasive cancer, detection of LCIS at the margin of the lumpectomy is not associated with an increased risk of local recurrence.[12,13] In a recent analysis of LCIS treated with local excision with microscopically negative margins, the ipsilateral breast cancer recurrence was still 14.4% at 12 years.[14] These outcomes are comparable to those of studies in which patients received local excision without attention to margins: 10%–18% at 10 years.[8,15]

When LCIS is the only pathology found on a core needle biopsy associated with a mammographically detected lesion, a sampling error becomes a valid concern. LCIS may not accurately represent this radiographic finding, and more advanced disease could be present. In several studies, further surgical excision of LCIS revealed either DCIS or invasive cancer in 25%–31% of all cases.[1,2,16] Thus, surgical excision is warranted if LCIS is diagnosed on core needle biopsy.

DR. VIRGINIA BORGES: What is the risk of developing cancer?

Cancer Risk in Patients With LCIS

DR. NICOLE KOULANAKIS AND DR. CHRISTINA FINLAYSON: In the majority of patients, LCIS is an indolent disease. As discussed, when patients are treated with surgical excision alone, the reported rate of ipsilateral local recurrence ranges from 10%–18% at 10 years.[8,14,15] The risk of subsequent contralateral invasive disease becomes more significant only with longer follow-up: 14% at 10 years and up to 18% at 25 years.[8,17] Older patients with LCIS are at an increased risk for developing an invasive cancer. For patients with LCIS who are younger than 40 years of age, the incidence of invasive breast cancer in either breast is 8.3% after 25 years of follow-up but rises to 25% in patients diagnosed with LCIS who are over the age of 60 years.[8]

The pathology of the subsequent invasive cancers after LCIS differs significantly among the studies, although the most recent data show a trend toward ILC occurring in the previous biopsy site. A SEER (Surveillance, Epidemiology and End Results) database review showed that the histology of invasive breast cancer diagnosed after LCIS was lobular in 23% of patients and ductal in 6.5%.[8] These findings support the histological evidence that ALH/LCIS may serve as a precursor to ILC. This observation at the pathological level has not led to changes in the operative treatment of LCIS. The clinical significance of these pathologic findings will require further investigation and, it is hoped, will lead to means of identifying patients who may benefit from greater local treatment of LCIS.

Pages

  • 1
  • 2
  • next ›
  • last »
References: 

REFERENCES

1. Elsheikh TM, Silverman JF. Follow-up surgical excision is indicated when breast core needle biopsies show atypical lobular hyperplasia or lobular carcinoma in situ: a correlative study of 33 patients with review of the literature. Am J Surg Pathol. 2005;29:534-43.

2. Foster MC, Helvie MA, Gregory NE, et al. Lobular carcinoma in situ or atypical lobular hyperplasia at core-needle biopsy: is excisional biopsy necessary? Radiology. 2004;231:813-9.

3. Georgian-Smith D, Lawton TJ. Calcifications of lobular carcinoma in situ of the breast: radiologic-pathologic correlation. AJR Am J Roentgenol. 2001;176:
1255-9.

4. Simpson PT, Gale T, Fulford LG, et al. The diagnosis and management of pre-invasive breast disease: pathology of atypical lobular hyperplasia and lobular carcinoma in situ. Breast Cancer Res. 2003;5:258-62.

5. Carder PJ, Shaaban A, Alizadeh Y, et al. Screen-detected pleomorphic lobular carcinoma in situ (PLCIS): risk of concurrent invasive malignancy following a core biopsy diagnosis. Histopathology. 2010;57:472-8.

6. Mann RM, Kuhl CK, Kinkel K, Boetes C. Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol. 2008;18:1307-18.

7. Li CI, Anderson BO, Daling JR, Moe RE. Changing incidence of lobular carcinoma in situ of the breast. Breast Cancer Res Treat. 2002;75:259-68.

8. Chuba PJ, Hamre MR, Yap J, et al. Bilateral risk for subsequent breast cancer after lobular carcinoma-in-situ: analysis of surveillance, epidemiology, and end results data. J Clin Oncol. 2005;23:5534-41.

9. Hanby AM, Hughes. In situ and invasive lobular neoplasia of the breast. Histopathology. 2008;52:58-66.

10. Page DL, Schuyler PA, Dupont WD, et al. Atypical lobular hyperplasia as a unilateral predictor of breast cancer risk: a retrospective cohort study. Lancet. 2003;361:125-9.

11. Nayar R, Zhuang Z, Merino MJ, Silverberg SG. Loss of heterozygosity on chromosome 11q13 in lobular lesions of the breast using tissue microdissection and polymerase chain reaction. Hum Pathol. 1997;28:277-82.

12. Ben-David MA, Kleer CG, Paramagul C, et al. Is lobular carcinoma in situas a component of breast carcinoma a risk factor for local failure after breast-conserving therapy? Results of a matched pair analysis. Cancer. 2006;106:28-34.

13. Ciocca RM, Li T, Freedman GM, Morrow M. Presence of lobular carcinoma in situ does not increase local recurrence in patients treated with breast-conserving therapy. Ann Surg Oncol. 2008;15:2263-71.

14. Fisher ER, Land SR, Fisher B, et al. Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: twelve-year observations concerning lobular carcinoma in situ. Cancer. 2004;100:238-44.

15. Ottesen GL, Graversen HP, Blichert-Toft M, et al. Carcinoma in situ of the female breast. 10 year follow-up results of a prospective nationwide study. Breast Cancer Res Treat. 2000;62:197-210.

16. Brem RF, Lechner MC, Jackman RJ, et al. Lobular neoplasia at percutaneous breast biopsy: variables associated with carcinoma at surgical excision. AJR Am J Roentgenol. 2008;190:637-41.

17. Claus EB, Stowe M, Carter D, Holford T. The risk of a contralateral breast cancer among women diagnosed with ductal and lobular breast carcinoma in situ: data from the Connecticut Tumor Registry. Breast. 2003;12: 451-6.

18. Vogel VG, Costantino JP, Wickerham DL, et al. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA. 2006;295:2727-41.

19. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst. 2005;97:1652-62.

20. Fisher B, Anderson S, Bryant J, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002;347:1233-41.

21. Arpino G, Bardou VJ, Clark GM, Elledge RM. Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res. 2004;6:R149-56.

22. Alkner S, Bendahl PO, Fernö M, et al. Tamoxifen reduces the risk of contralateral breast cancer in premenopausal women: Results from a controlled randomised trial. Eur J Cancer. 2009;45:2496-502.

23. Bertelsen L, Bernstein L, Olsen JH, et al. Effect of systemic adjuvant treatment on risk for contralateral breast cancer in the Women's Environment, Cancer and Radiation Epidemiology Study. J Natl Cancer Inst. 2008;100:32-40.

24. Cisco RM, Ford JM, Norton JA. Hereditary diffuse gastric cancer: implications of genetic testing for screening and prophylactic surgery. Cancer. 2008;113(7 Suppl):1850-6.

25. Norton JA, Ham CM, Van Dam J, et al. CDH1 truncating mutations in the E-cadherin gene: an indication for total gastrectomy to treat hereditary diffuse gastric cancer. Ann Surg. 2007;245:873-9.

26. Morrow M. Keeney K, Scholtens D, et al. Selecting patients for breast-conserving therapy: the importance of lobular histology. Cancer. 2006;106:2563-8.

27. Sastre-Garau X, Jouve M, Asselain B, et al. Infiltrating lobular carcinoma of the breast. Clinicopathologic analysis of 975 cases with reference to data on conservative therapy and metastatic patterns. Cancer. 1996;77:113-20.

28. Weiss MC, Fowble BL, Solin LJ, et al. Outcome of conservative therapy for invasive breast cancer by histologic subtype. Int J Radiat Oncol Biol Phys. 1992; 23:941-7.

29. Arthur DW, Winter K, Kuske RR, et al., A phase II trial of brachytherapy alone after lumpectomy for select breast cancer: tumor control and survival outcomes of RTOG 95-17. Int J Radiat Oncol Biol Phys. 2008;72:467-73.

30. Benitez PR, Keisch ME, Vicini F, et al. Five-year results: the initial clinical trial of MammoSite balloon brachytherapy for partial breast irradiation in early-stage breast cancer. Am J Surg. 2007;194:456-62.

31. Ott OJ, Lotter M, Sauer R, Strnad V. Accelerated partial breast irradiation with multi-catheter brachytherapy: Local control, side effects and cosmetic outcome for 274 patients. Results of the German-Austrian multi-centre trial. Radiother Oncol. 2007;82:281-6.

32. Smith BD, Arthur DW, Buchholz TA, et al. Accelerated partial breast irradiation consensus statement from the American Society for Radiation Oncology (ASTRO). Int J Radiat Oncol Biol Phys. 2009;74:987-1001.

33. Polgar C, Van Limbergen E, Pötter R, et al. Patient selection for accelerated partial-breast irradiation (APBI) after breast-conserving surgery: recommendations of the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) breast cancer working group based on clinical evidence (2009). Radiother Oncol. 2010;94:264-73.

34. Wasif N, Maggard MA, Ko CY, Giuliano AE. Invasive lobular vs. ductal breast cancer: a stage-matched comparison of outcomes. Ann Surg Oncol. 2010;17:1862-9.

35. Buchanan CL, Flynn LW, Murray MP, et al. Is pleomorphic lobular carcinoma really a distinct clinical entity? J Surg Oncol. 2008;98:314-7.

36. Simpson PT, Reis-Filho JS, Lambros MB, et al. Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinomas. J Pathol. 2008;215:231-44.

Related Articles

  • Implications of Mutation Profiling in Myeloid Malignancies—PART 1: Myelodysplastic Syndromes and Acute Myeloid Leukemia
  • Systemic Treatment Options for Brain Metastases from Non–Small-Cell Lung Cancer
  • Secondary Prevention Strategies for Nonmelanoma Skin Cancer
  • Immune Checkpoint Inhibitor Therapy in Patients With Autoimmune Disease
  • Bilateral, Multifocal Renal Masses in a 35-Year-Old Man With a History of Tuberous Sclerosis Complex

Resource Topics rightRail

  • Resource Topics
  • Partner Content
Breast Cancer
Lung Cancer
Prostate Cancer
Colorectal Cancer
Melanoma
Cutaneous T-Cell Lymphomas: Mycosis Fungoides and Sézary Syndrome
3 Keys to Success in the Oncology Care Model

Current Issue

Oncology Vol 32 No 4
Apr 15, 2018 Vol 32 No 4
Digital Edition
Subscribe
Connect with Us
  • Twitter
  • Facebook
  • LinkedIn
  • RSS
Modern Medicine Network
  • Home
  • About Us
  • Advertise
  • Advertiser Terms
  • Privacy statement
  • Terms & Conditions
  • Editorial & Advertising Policy
  • Editorial Board
  • Contact Us
Modern Medicine Network
© UBM 2018, All rights reserved.
Reproduction in whole or in part is prohibited.