By Monica Fornier, MD [5], Pamela N. Munster, MD [6], and Andrew D. Seidman, MD [7]

Recent trials comparing single-agent vs combination therapy in metastatic breast cancer suggest that it may be time to reconsider the belief that combination chemotherapy is the gold standard of treatment. Based on the

Introduction

Breast cancer is the most frequently diagnosed cancer in American women, and the second most common cause of cancer death.[1] Over the past several decades, there has been a fairly steady increase in the incidence of the disease. Epidemiologic data from the United States analyzed between 1988 and 1990 indicate that the lifetime risk of developing breast cancer is 12.2%, or, stated in another way, one in eight women will develop the disease at some point during her life.[2]

Although approximately 80% of breast cancer patients present with disease limited to the breast and/or axillary lymph nodes, almost half of these patients later develop metastatic disease and eventually succumb to it. Metastatic breast cancer represents a historically incurable condition despite the judicious use of various hormonal manipulations, as well as surgical and radiotherapeutic interventions, and the application of active cytotoxic chemotherapeutic agents for hormone-refractory disease. For most patients with metastatic disease, treatment provides only temporary control of cancer growth. Outside of experimental protocols, the goals of management, therefore, are to palliate symptoms with as little treatment-related toxicity as possible and to extend the duration of high-quality life.

Metastatic breast cancer is moderately sensitive to chemotherapy, with 25% to 40% of patients achieving a partial or, less commonly, complete response to single-agent therapy; the duration of such responses averages 6 months.[3] Historically, the most commonly used cytotoxic agents in the management of metastatic breast cancer have been cyclophosphamide (Cytoxan, Neosar), methotrexate, fluorouracil, doxorubicin, and, more recently, the taxanes. When the disease progresses further, vinorelbine (Navelbine) and other vinca alkaloids, mitomycin (Mutamycin), mitoxantrone (Novantrone), gemcitabine (Gemzar), etoposide, and cisplatin (Platinol) represent some of the other frequently used cytotoxic drugs.

Combination vs Single-Agent Chemotherapy

Combinations of two, three, or more chemotherapeutic agents are occasionally employed based on preclinical data suggesting improved antitumor activity (ie, additive or synergistic effects); many of these combinations are derived empirically, however. Although combination regimens may sometimes yield higher response proportions than single-agent therapy, this can occur at the cost of greater toxicity, perhaps resulting in an overall lower therapeutic index.[4] This issue was specifically addressed by two studies presented at the 34th annual meeting of the American Society of Clinical Oncology (ASCO) in 1998.

The first study, conducted by the Finnish Breast Cancer Group, randomized 303 breast cancer patients with distant metastases to one of two regimens: (1) single-agent chemotherapy with epirubicin (20 mg/m² weekly until disease progression or a cumulative dose of 1,000 mg/m²), followed by mitomycin (8 mg/m² every 4 weeks) as second-line therapy; or (2) the CEF polychemotherapy regimen, consisting of cyclophosphamide (500 mg/m²), epirubicin (60 mg/m²), and fluorouracil (500 mg/m²) every 3 weeks, followed by mitomycin (8 mg/m²) and vinblastine (6 mg/m²) every 4 weeks. Although responses to CEF tended to last modestly longer than responses to epirubicin alone (median duration, 12 vs 10.5 months; P = .07), no significant difference in time to progression (P = .28) or overall survival (P = .65) was found between the two arms.

Moreover, no difference in survival was seen when only the patients who received both the first- and second-line treatments were compared (P = .96), or when survival was calculated from the
beginning of second-line therapy (P = .56). Single-agent therapy was also associated with less
toxicity and better quality of life.[5]
The second report, presented by the International Taxotere 304 Study Group, described the results
of a phase III study comparing single-agent docetaxel (Taxotere) therapy vs the combination of
mitomycin and vinblastine in patients with metastatic breast cancer whose disease had progressed
following an anthracycline-containing regimen. In this experience, single-agent docetaxel therapy
proved more effective than mitomycin plus vinblastine, not only with respect to response rate and
time to treatment failure, but, most gratifyingly, with regard to survival. Median survival duration
was 11.4 months in the docetaxel group vs 8.7 months in the mitomycin-vinblastine group (P =
.0097).[6]
In this context, the experience of Sledge and colleagues, reported at the 1997 ASCO meeting, should
be considered.[7] In that study, Eastern Cooperative Oncology Group Study (ECOG) 1193,
single-agent therapy with either doxorubicin or paclitaxel (Taxol) was compared with the
combination of doxorubicin and paclitaxel as first-line therapy in 739 patients with metastatic breast
cancer. Patients receiving single-agent therapy were crossed over to the other agent at the time of
disease progression.
Monotherapy with either doxorubicin or paclitaxel had equivalent therapeutic activity; the
combination of the two drugs resulted in superior overall response rate and time to treatment
failure. Despite this, combination therapy was not superior to sequential single-agent therapy with
regard to overall survival and quality of life.
Taken together, these trials should prompt a reconsideration of the conventional wisdom that
combination chemotherapy is the “gold standard” for the treatment of metastatic breast cancer.

Is More Better?
Ultimately, the treatment of stage IV breast cancer often represents an attempt to reach an
equilibrium between the palliation conferred by response to therapy, on the one hand, and
treatment-related toxicity, on the other.
Thus, the issue of the value of dose intensification is of utmost importance, since increased doses
are commonly associated with greater toxicity.

Dose-Intensified Regimens
A trial of the Italian group Gruppo Oncologico Nord-Ouest (GONO), reported at ASCO 1998 by
Lionetto et al, is instructive in this regard. This trial randomized patients to receive either standard
doses of CEF or the same regimen in an intensified manner with growth factor support; patients in
the “intensified CEF” arm actually received an 80% increase in dose intensity compared to those in
the standard CEF arm.[8] Quality of life was also assessed.
In the 151 randomized patients, no differences between the two arms were observed with respect to
response rates or progression-free survival. However, the intensified regimen was associated with
more toxicity. Grade 3 and 4 events were more frequent with intensified CEF than with the standard
regimen (anemia, 18% vs 3%; leukopenia, 26% vs 6%; thrombocytopenia, 8% vs 2%; and mucositis,
13% vs 3%).

High-Dose Chemotherapy With Stem-Cell Support
Regarding dose escalation, the potential role of high-dose chemotherapy with stem-cell rescue still
awaits definition. Although some authors have reported 5-year disease-free survival proportions of
approximately 20% in selected patients treated with such regimens,[9,10] to date there has been no
demonstration of clear superiority of high-dose consolidation over other strategies in the
management of stage IV breast cancer.
Most studies of high-dose chemotherapy have been uncontrolled phase I and II trials, often
accompanied by the irresistible, but problematic and unfortunate, comparisons with historical
controls. Moreover, the inherent bias of patient selection for these trials has also been an issue. The
first reported randomized trial of standard chemotherapy vs high-dose chemotherapy with either
autologous bone marrow or peripheral blood stem-cell support, conducted by Bezwoda et al, showed
that high-dose therapy significantly extended the durations of response and survival.[11] However,
the median follow-up was only 72 weeks, the study was small, and the standard-dose chemotherapy
arm has been criticized for being suboptimal.
At the 1998 ASCO meeting, several presentations evaluated different transplant modalities, ie, single
vs tandem high-dose chemotherapy, tandem vs triple high-dose chemotherapy, and purging of
tumor cells from peripheral blood stem cells.[12,13] The exploratory nature of these trials and
preliminary results underscore the need for large, prospective clinical trials to address these
questions.
On the basis of the limited data available to date from randomized, prospective trials, high-dose chemotherapy cannot yet be considered “state-of-the-art” treatment for advanced breast cancer and should be offered only to patients in the setting of clinical trials. The final results of such large prospective trials are eagerly awaited (Table 1).
If multiagent chemotherapy and dose escalation prove to be suboptimal in conferring a consistent survival advantage in metastatic breast cancer, other strategies must be pursued. These include the development of newer active drugs, or the exploration of different alternatives, for example, biological therapies.

Taxanes and Beyond
The taxanes, ie, paclitaxel and docetaxel, are a relatively new addition to the chemotherapeutic arsenal against breast cancer. Their mechanism of action involves the formation of polymerized microtubules and their stabilization against the forces that lead to depolymerization. Proapoptotic effects, as well as antiangiogenic actions, may also be clinically relevant.[14,15] The determination of optimal dosing and scheduling of taxanes has been an important objective during their development. While the clinical development of docetaxel has largely involved a single administration schedule (1-hour infusion) and a narrow dose range (60 to 100 mg/m²), the range of paclitaxel doses and schedules has been broader (varying from 80 to 250 mg/m² infused over 1 hour weekly to 3-, 24-, or even 96-hour infusions every 3 weeks).

Paclitaxel

Optimal Dose and Schedule—Preclinical data have suggested that the duration of paclitaxel exposure may be more important than dose for the cytotoxic activity of this drug. Depending on the duration of exposure, cellular cytotoxicity can be achieved at relatively low concentrations of paclitaxel, on the order of 0.01 µM.[16,17] That duration of exposure can be an important element in the clinical activity of paclitaxel has also been demonstrated by the activity of prolonged 96-hour continuous infusions in some patients with metastatic breast cancer soon after their disease progressed during shorter infusions of the drug.[18,19] However, the administration of 96-hour continuous infusions of paclitaxel imposes a certain inconvenience for both the clinic and patient. Many clinical trials have addressed the issue of both the optimal dosing and scheduling of the taxanes (Table 2). With regard to dosing, the results of a randomized trial of paclitaxel doses of 135 vs 175 mg/m² on a 3-hour schedule in pretreated women with metastatic breast cancer revealed no major differences in response rates (22% and 29%, respectively) or median survival durations (10.5 and 11.7 months, respectively). Progression-free survival was slightly longer with the 175-mg/m² dose than with the lower dose (4.2 vs 3 months; P = .02), however.[20]

In the Cancer and Leukemia Group B (CALGB) trial 9342 reported at the 1998 ASCO meeting, 450 patients were randomized to receive 175-, 210-, or 250-mg/m² doses of paclitaxel on a 3-hour schedule. The three groups did not differ with respect to response rates or survival, but the higher doses were associated with greater toxicity, particularly peripheral neuropathy (26% rate of grade 3 events). These data provided little compelling evidence to support paclitaxel 3-hour infusion dosing of greater than 175 mg/m² in women with metastatic breast cancer.[21]

Another randomized clinical trial led by M. D. Anderson Cancer Center detected no significant difference in objective responses or survival with paclitaxel at either 140 mg/m² via a 96-hour infusion or 250 mg/m² via a 3-hour infusion—the maximally tolerated doses at these schedules.[22] Two other trials have addressed optimal paclitaxel scheduling. The randomized Bristol-Myers Squibb (BMS) 071 trial, in which women with metastatic breast cancer were treated with paclitaxel (175 mg/m²) infused over either 3 or 24 hours, allowing for intrapatient dose escalation as tolerated, was conducted largely in Europe, Canada, and Israel. The two groups did not differ significantly with respect to response rates (29% and 32%, respectively).[23] Similar results were obtained by National Surgical Adjuvant Breast and Bowel Project (NSABP) trial B-26. In this trial, response rates for paclitaxel (250 mg/m²) infused over either 3 or 24 hours were 40% and 50%, respectively, suggesting that the more myelosuppressive 24-hour schedule does not result in a significant improvement in outcome in the palliative setting.[24] The inclusion of patients with stage IIIB disease partly explains the higher response proportions in the NSABP B-26 trial, as compared to the aforementioned studies.

Weekly Administration—Another method to provide extended cumulative drug exposure is frequent repetitive drug administration, such as by a weekly schedule. Weekly dosing of paclitaxel via a 1-hour infusion has been demonstrated to be a well-tolerated, feasible administration schedule.[25] Weekly administration of paclitaxel is both dose-intense and dose-dense but also has a favorable toxicity profile and a remarkable degree of activity in patients with metastatic breast...
cancer.
In our experience at Memorial Sloan-Kettering Cancer Center, the overall response rate to a weekly administration schedule was 53% (95% confidence interval [CI], 34% to 72%), which compares favorably with the activity noted for 3-, 24-, and 96-hour regimens. In contrast to these other regimens however, myelosuppression was insignificant with weekly paclitaxel, no febrile neutropenia was encountered, and no patient required hematopoietic growth factor support.

A possible explanation for the noted uncoupling of drug delivery from myelotoxicity in weekly 1-hour paclitaxel may be found in the pharmacodynamic observation that, with this schedule, plasma paclitaxel concentrations remain above 0.1 µmol/L for a relatively brief period after a dose of 100 mg/m² delivered over 1 hour. Huizing et al have, in fact, previously reported that to achieve an 80% decline from baseline absolute neutrophil count, plasma paclitaxel concentration would need to remain above the threshold concentration of 0.1 µmol/L for approximately 20 hours.[26] This, considered together with the cyclic kinetics of neutrophil maturation, may explain the relative lack of myelosuppression.

Paclitaxel-Containing Combination Regimens—Given the caveats previously raised about combination chemotherapy for metastatic breast cancer, at the 1998 ASCO meeting, Loesch et al presented a phase II study aimed at determining the response rate and safety of a combination of paclitaxel (80 mg/m² infused over 1 hour), fluorouracil (425 mg/m²), and leucovorin (20 mg/m²) administered weekly as first-line therapy in patients with metastatic breast cancer.[27] Full doses could be administered in the fourth week to only 63% of patients, primarily due to diarrhea and neutropenia; a “3 week on, 1 week off” regimen subsequently overcame this problem.

Thirty patients were evaluated: The overall response rate was 47%, with 10% complete remissions and 37% partial remissions. This activity is comparable to other regimens in similar patients. Another abstract presented at ASCO 1998 reported on the results of a randomized trial comparing paclitaxel plus losoxantrone, an anthrapyrazole in clinical development with structural similarities to both doxorubicin and mitoxantrone, vs paclitaxel alone.[28] In 148 patients, a response rate of 54% was noted with the combination vs 15% with paclitaxel alone (P < .001). Progression-free survival was significantly superior with the combination regimen as well.

Toxicity was also higher with paclitaxel plus losoxantrone, however. Patients treated with the combination regimen had a 66% incidence of grade 3-4 neutropenia, vs a rate of 32% with paclitaxel alone, and two cases of congestive heart failure occurred with the combination, vs one case with paclitaxel alone. Analysis of survival awaits longer follow-up, but these data are certainly provocative, if not surprising in light of the ECOG 1193 results with paclitaxel plus doxorubicin.[7]

Docetaxel

Regarding docetaxel, Loeffler et al reported their experience with weekly infusions in stage IV breast cancer patients.[29] Doses were escalated in increments of 5 mg/m² from 30 to 45 mg/m² weekly × 6 with a 2-week break. The overall response rate was 50%, with 15% complete remissions and 35% partial remissions; 38% of patients had stable disease. Moreover, three out of five patients with a history of prior paclitaxel therapy responded to docetaxel. These investigators observed that weekly docetaxel has activity in chemotherapy-pretreated breast cancer that is comparable to 100 mg/m² of docetaxel every 3 weeks, but with apparently less grade 3-4 leukopenia.

Another ASCO presentation by Sjöström et al focused on a phase III trial that compared docetaxel (100 mg/m²) every 3 weeks to methotrexate (200 mg/m²) plus fluorouracil (600 mg/m² on days 1 and 8) every 3 weeks (MF regimen) in 199 patients with anthracycline-resistant breast cancer.[30] The overall response rate (partial and complete) was 42% in the docetaxel arm and 19% in the MF arm (P < .001); median time to progression was 6 months in the docetaxel group and 3 months in the MF group (P = .006). These results thus demonstrated the superiority of single-agent docetaxel over MF for patients with anthracycline-resistant metastatic breast cancer.

Newer Agents

Capecitabine

Considering newer drugs for advanced breast cancer, one of the most interesting agents is capecitabine (Xeloda). Capecitabine is a novel, oral, selectively tumor-activated fluoropyrimidine carbamate that has shown promising activity in breast and colon cancers during phase I and II evaluations. This agent is sequentially converted to fluorouracil by three enzymes located in the liver and within tumors, with the final conversion step to fluorouracil catalyzed by thymidine phosphorylase, which is found preferentially in breast cancer cells as compared to surrounding normal host tissues (Figure 1).
An abstract presented by Blum et al at the 1998 ASCO meeting described a phase II trial of twice-daily oral capecitabine (2,510 mg/m²/d) given for 2 weeks, followed by a 1-week rest period, and repeated in 3-week cycles, among patients with paclitaxel-refractory metastatic breast cancer. A total of 163 patients were enrolled by 24 centers; patients had received at least two but no more than three prior chemotherapeutic regimens, one of which contained paclitaxel as treatment for metastatic disease.

The primary study end point was tumor response in patients with measurable disease. The response rate was 20%, median response duration was 8.1 months, and median survival was 12.8 months. Moreover, in patients with baseline pain > 20 mm on a visual analog scale, 47% showed a significant improvement in pain. Diarrhea (14%) and hand-foot syndrome (10%) were the only treatment-related adverse events that occurred with a grade 3 or 4 intensity in ≥ 10% of patients. Alopecia did not occur and myelosuppression was minimal; there was no treatment-related mortality. Given these data and the historical context of the use of continuous intravenous infusions of fluorouracil as a salvage therapy for metastatic breast cancer, capecitabine was approved by the FDA for use in patients with paclitaxel-refractory metastatic breast cancer in the spring of 1998. In summary, capecitabine can be considered an active drug in the treatment of paclitaxel-refractory advanced breast cancer with a relatively favorable toxicity profile.

Capecitabine vs Other Agents—A second abstract reported at ASCO 1998 presented the results of a randomized phase II trial of capecitabine vs cyclophosphamide, methotrexate, and fluorouracil (CMF) as first-line chemotherapy for advanced breast cancer in women > 55 years old (median age in both groups, 69 years). Capecitabine was given orally at a dosage of 2,510 mg/m²/d for 2 weeks, followed by 1 week of rest, and CMF was administered intravenously on day 1 every 21 to 28 days.

A total of 95 women were randomized. Response rates were 25% in the capecitabine-treated patients and 16% in the CMF recipients, and time to progression was 132 days with capecitabine vs 94 days with CMF.

Regarding toxicity, grade 3-4 clinical adverse events were reported by 44% of patients receiving capecitabine and 20% patients treated with CMF. The difference between the two groups was due primarily to hand-foot syndrome (16% vs 0%) and diarrhea (8% vs 3%). On the other hand, grade 3-4 hematologic toxicity occurred more frequently with CMF (47%) than with cape-citabine (20%). Overall, within the constraints imposed by relatively small sample sizes, it appears that home-based monotherapy with capecitabine appears to have at least comparable efficacy to CMF combination therapy in this older patient population.

Finally, in a multicenter trial presented by O'Reilly et al, the activity of capecitabine was compared to that of paclitaxel in patients with advanced breast cancer whose disease had progressed following prior anthracycline therapy.[33] In this study, two schedules of capecitabine were planned: (1) 2,510 mg/m²/d for 14 days, followed by 1 week of rest; or (2) a continuous daily schedule of 1,331 mg/m²/d. (The continuous arm of capecitabine was discontinued, however, after two patients were enrolled.[personal communication, Dr. Fabio Benedetti, Roche, Inc., February 1999]) Paclitaxel was administered at a dosage of 175 mg/m² on day 1 of each 3-week cycle.

With 41 evaluable patients, the intermittent schedule of capecitabine yielded a 36% response rate, as compared with a 21% rate with paclitaxel. Median time to progression was 92 days on the intermittent capecitabine schedule and 95 days on paclitaxel. Grade 3-4 events were reported in 22% of patients treated with capecitabine and 58% given paclitaxel.

Capecitabine in Combination Regimens—In a relevant preclinical Japanese study, the efficacy of capecitabine and fluorouracil in combination with other cytostatic agents, including taxanes, was evaluated in five mouse xenograft models of human breast carcinoma cells.[34] While the combination of fluorouracil and taxanes demonstrated only additive efficacy, treatment with capecitabine and the taxanes showed synergy and produced tumor regression in some xenograft models. In fact, the taxanes increased the tumor levels of thymidine phosphorylase by four- to eightfold within 4 to 10 days following the single administration; the treatment did not increase the mouse enzyme levels in normal tissues (intestine and liver), however. Since tumoral thymidine phosphorylase levels correlate with in vivo susceptibility to capecitabine, it is possible that the taxanes may enhance the efficacy of capecitabine by upregulating the enzyme in human cancer cells.

Reinventing Old Drugs

The continued search for newer agents for control of disease and palliation of symptoms in
metastatic breast cancer has also led to the manipulation of the more conventional drugs so as to achieve equivalent or possibly greater activity with decreased toxicity.

Liposomal Doxorubicin

One promising agent in this respect is liposome-encapsulated doxorubicin (TLC D-99). A phase III trial reported at ASCO 1998 evaluated its use vs conventional doxorubicin, both at a dose of 75 mg/m² every 3 weeks.[35] This trial randomized 69 patients who were stratified on the basis of prior exposure to doxorubicin. During the trial, patients underwent serial ventriculography at cumulative doses of 300, 400, and 500 mg/m² and then every cycle thereafter. Patients were removed from the study if left-ventricular ejection fraction (LVEF) declined by ≥ 20% from the baseline value (if this value was ≥ 50%) or by ≥ 10% from baseline (if < 50%), or if congestive heart failure developed. Response rates were 33% in the TLC D-99 arm and 29% in the doxorubicin arm. Congestive heart failure developed in three patients (4%) treated with doxorubicin but in none of those given TLC D-99. Also, TLC D-99 generally produced less emesis, stomatitis, fever, and infection, suggesting that it may as effective as free doxorubicin but perhaps safer.

A Novel Immunoconjugate

Tolcher et al described a phase II randomized trial in which a novel immunoconjugate linking a chimeric human/mouse monoclonal antibody to approximately eight doxorubicin molecules was compared to doxorubicin.[36] This antibody is directed against the Lewisy antigen, which is expressed in 75% of all breast cancers but has limited expression in normal tissues, has shown promising antitumor activity in preclinical xenograft models. A total of 25 patients with metastatic breast cancer entered this trial. There was one partial remission in the 14 patients (7%) on the immunoconjugate arm, showing that its clinical activity is limited. Also, two patients in this arm developed grade 3-4 toxicity with hemorrhagic gastritis, possibly reflecting the fact that the Lewisy antigen unfortunately is also expressed on some gastrointestinal mucosal cells.

New, Multitargeted Antifolate

MTA (LY231514) is a new, multitargeted antifolate that inhibits thymidylate synthase and other folate-dependent enzymes, including dihydrofolate reductase and glycaminide ribonucleotide formyltransferase. It has potent antitumor activity in vitro and in vivo and produced responses in phase I trials. A phase II study that evaluated the activity of MTA in 38 patients with locally recurrent or metastatic breast cancer was presented at the 1998 ASCO meeting.[37] Of the 38 patients, 8 were chemotherapy-naïve, 14 had received adjuvant chemotherapy, 11 had received chemotherapy for metastatic disease, and 5 patients had had both. MTA was administered at a dosage of 600 mg/m² every 21 days. Responses were documented in 11 patients (31%), with 1 complete and 10 partial remissions. Of the 11 patients who responded, 5 had received prior taxane or anthracycline therapy. Median duration of response was 8+ months. Overall, 135 cycles of MTA were delivered with 28 dose reductions and 26 delays. Reasons for reductions included neutropenia (39%), mucositis (18%), and transaminase elevation (23%). Grade 2-3 nonhematologic toxicities included mucositis (34%), nausea and vomiting (39%), and transaminase elevation (88%). Also, a grade 2 skin rash developed in 50% of patients, a grade 3 reaction in 4%, and a grade 4 reaction in 15%. The skin rash problem was ameliorated with prophylactic dexamethasone.

Marimistat

Other agents under study include marimistat, a broad-spectrum matrix metalloproteinase inhibitor. This drug has already shown activity in numerous solid tumor models, including breast cancer, in which high levels of matrix metalloproteinases (enzymes instrumental in the growth and spread of malignant cells) are expressed. As reported at the 1998 ASCO meeting, an ongoing phase I study demonstrated the feasibility of using marimistat in conjunction with doxorubicin and cyclophosphamide in patients with metastatic breast cancer.[38]

Hormonal Strategies

Endocrine therapy has been a critical component of the treatment of advanced breast cancer for over a century, since Beatson published his observation of tumor response in women with metastatic breast cancer undergoing oophorectomy.[39] As hormonal interactions and their molecular mechanisms have become more well understood, more specific agents for hormonal therapy have been developed.
Over the last 2 decades, many new hormonal anticancer agents have been developed and introduced into clinical trials. However, despite this intense research, tamoxifen (Nolvadex) still remains the most important hormonal antitumor agent for breast cancer.

Tamoxifen

Tamoxifen is a synthetic antiestrogen that blocks estrogen binding to the estrogen receptor (ER). Although (unsuccessfully) designed as a contraceptive, tamoxifen’s activity in metastatic breast cancer was recognized over 2 decades ago. Since then, many trials have confirmed the role of tamoxifen as a safe, effective antitumor agent. With an overall response rate of about 30% to 35% in unselected patients and a significantly higher response rate (60% to 75%) in patients with ER positive and progesterone receptor (PR) positive tumors, tamoxifen is as efficacious as many chemotherapy regimens.

A recent report of long-term follow-up from earlier studies showed a median survival of 27.2 months and a median time to progression of 6.7 months when tamoxifen was used as initial hormonal therapy in women with ER/PR positive or unknown tumors.[40] However, less than 10% activity was noted among women with ER/PR negative tumors.

Several randomized studies demonstrated that tamoxifen doses higher than 20 mg/d do not confer further advantages.[41-43] The main side effects of tamoxifen include hot flashes, thromboembolic events (3.2% in women with metastatic cancer),[44] depression, a slight increase in endometrial cancer, and reported cases of corneal and retinal disease.

Use in Premenopausal Women—Although the benefits of tamoxifen in postmenopausal women are unequivocal, its use in premenopausal women has been more controversial. First, a greater proportion of premenopausal metastatic breast cancer is ER/PR negative. Second, other methods, such as surgical- or radiation-induced ovarian ablation or hormonal blockade by luteinizing hormone–releasing hormone (LHRH) agonists have been favored by some experts. In addition, some authors have long recommended a combination of tamoxifen and either medical or surgical ovarian ablation.[45]

Tamoxifen and ovarian ablation have been compared in at least three randomized, albeit small, trials, and appear to be equally effective.[46-48] A meta-analysis including four trials comparing tamoxifen and ovarian ablation (by surgery or irradiation) in premenopausal women with ER positive tumors could not identify a superior regimen. Of note, however, were the observations that an initial response to either tamoxifen or ovarian ablation was predictive of a subsequent response to the other treatment,[49] and that failure to respond to tamoxifen did not preclude further response to oophorectomy in some women.[46]

A small Italian study compared surgical ovarian ablation to medical ovarian ablation (goserelin [Zoladex]), with or without tamoxifen, in a 2 × 2 design. This study found no clear survival advantage in any of the four groups, hence suggesting that combining tamoxifen with ovarian ablation does not add any advantages. However, the patients who received concomitant tamoxifen and goserelin experienced more toxicity.[50]

Tamoxifen Resistance—Unfortunately, breast cancer in most patients will eventually become resistant to tamoxifen. Tamoxifen resistance is not fully understood. None of the proposed mechanisms, such as the emergence of tamoxifen-dependent cell lines and loss or mutations of the ER, its functions, and interactions, appear to comprehensively explain resistance to tamoxifen.[51,52]

Other Antiestrogens

The significant activity and relatively modest toxicity of tamoxifen (ie, high therapeutic index) when compared with cytotoxic chemotherapy has led to an intensive search for other hormonal agents.

Toremifene (Fareston), an antiestrogen with properties similar to those of tamoxifen, was recently approved in the United States for the treatment of metastatic breast cancer. Large American and European randomized studies found no significant differences in the efficacy and safety of toremifene and tamoxifen when the two therapies were compared in postmenopausal women with ER positive or unknown tumors.[53-57] The reported response rates were between 29% to 50%. Toremifene doses higher than 60 mg/d did not offer any advantages over lower doses. A crossover trial demonstrated cross-resistance of the two drugs.[57]

Other novel antiestrogens currently undergoing preclinical and clinical evaluation are droloxifene and the pure antiestrogen ICI 182780 (Faslodex). Droloxifene has been evaluated in phase II clinical trials.[58,59] Early clinical trials suggest that ICI 182780 has no adverse effects on the uterus, vagina, or brain, and that the drug is otherwise well tolerated.[60] More studies are needed to evaluate its efficacy.

Selective Estrogen Receptor Modulators—The development of newer selective estrogen...
receptor modulators (SERMs) offers reason for optimism. Designed to be more selective and less toxic than older agents, the SERMs have shown very exciting preclinical and clinical results. One SERM, raloxifene (Evista), approved for the treatment of osteoporosis in postmenopausal women, has also dramatically reduced the incidence of new breast cancers,[61] with relatively short follow-up. A “third-generation” SERM (LY353381) has entered phase II trials for the treatment of metastatic cancer after a phase I trial showed activity in women whose disease had progressed during tamoxifen therapy.

Aromatase Inhibitors

Aromatase inhibitors block the peripheral conversion of androstendione to estrone. This effect is not specific to the ovaries, but rather, occurs in multiple organs, such as adipose tissue, muscle, and liver—the latter being important sites of estrogen production in postmenopausal women.

Aminoglutethimide—The best known representative of this group is aminoglutethimide (Cytadren). When studied in women whose disease progressed while they were receiving tamoxifen, the patients with ER positive tumors had a response rate of 57%, as compared with a rate of 12% in those with ER negative tumors.[62] However, the relative lack of specificity of this agent, as well as bothersome side effects, such as adrenal suppression, skin rash, somnolence, dizziness, and gastrointestinal upset, have allowed newer more selective, less toxic aromatase inhibitors to take its place. Most of these agents are 100 to 1,000 more potent than aminoglutethimide. However, an evaluation of their efficacy as first-, second-, or third-line therapy in metastatic breast cancer awaits the completion or maturation of many ongoing studies (Table 3).

Anastrozole and Letrozole—The most commonly used new aromatase agents are the triazole nonsteroidal agents anastrozole (Arimidex) and letrozole (Femara). These agents achieve a major reduction in estrogen levels without suppressing adrenal function. Within hours of administration, estradiol levels are significantly suppressed.

Anastrozole was compared with megestrol acetate (160 mg) as second-line therapy in advanced breast cancer in a three-arm randomized trial conducted in Europe. Anastrozole was administered at doses of either 1 or 10 mg. Responses were seen in 34% of the patients in the 1-mg group, 33.9% in the 10-mg group, and 32.8% in the megestrol acetate group.[63] These findings were confirmed by an American study showing an objective response in 27% of women treated with 1 mg of anastrozole, 24% of those given 10 mg of the drug, and 39% of those who received megestrol acetate.[64,65] Although not significantly more active, anastrozole was better tolerated, with fewer cases of mild gastrointestinal disturbances. Also, its once-daily dosing appears to be more convenient than the four daily doses of megestrol. No difference was found between the two doses of anastrozole.

A randomized, double-blind trial compared two doses of letrozole (0.5 and 2.5 mg) with megestrol acetate (160 mg) as second-line therapy in advanced breast cancer in 551 patients with locally advanced or metastatic breast cancer. Although no significant difference in time to progression between the 2.5-mg dose of letrozole and megestrol acetate was found, letrozole caused fewer adverse effects and was associated with better compliance.[66] The higher (2.5-mg) dose of letrozole yielded significantly better overall survival than the lower dose (0.5 mg).

Other nonsteroidal aromatase inhibitors for the treatment of advanced breast cancer include fadrozole and vorozole. Fadrozole was compared with tamoxifen as first-line therapy in Europe.[67] A large, randomized trial compared fadrozole and megestrol acetate as second-line therapy in the United States.[68] Neither trial showed a significant difference in efficacy, but results suggested that fadrozole may be better tolerated than megestrol acetate. Fadrozole and tamoxifen do not appear to be mutually cross-resistant. In a trial comparing vorozole and megestrol acetate, vorozole was better tolerated but not more efficacious.[69]

Steroidal Aromatase Inhibitors—The steroidal aromatase inhibitors formestane and exemestane are presently being evaluated in clinical trials (Table 4). Formestane has been compared with tamoxifen but showed no significant difference in efficacy.[70]

Summary—It appears that the newer aromatase inhibitors are as effective as megestrol acetate and perhaps tamoxifen and are well tolerated. Their role as first-line hormonal therapy, either alone or in combination with agents that modulate the ER (eg, SERMs) awaits further definition.

Once widely used, medroxyprogesterone acetate and megestrol acetate are now considered third-line therapies due to poorly tolerated side effects (eg, significant weight gain, fluid retention, and thrombophlebitis). Nevertheless, the efficacy of both agents is comparable to that of tamoxifen and the aromatase inhibitors.

Antiprogestins

RU 486 (mifepristone, not available in the United States) is a synthetic antiprogestin and
antiglucocorticoid. A pilot trial showed minimal activity of RU 486 when used as a single agent.[71] The politically charged issues surrounding the use of RU 486 as an abortion agent have been an obstacle in its potential development as an antitumor agent.

New Biological Agents

A rapidly expanding understanding of breast cancer biology has spawned numerous new “biological” therapies, including signal transduction inhibitors (eg, farnesyl transferase inhibitors) angiogenesis inhibitors, monoclonal antibodies to growth factor receptors, vaccines, and other strategies. In particular, growth factors and their receptors are known to play a critical role in development, cell growth, and differentiation.[72] Such receptors span the membrane of the cell. The extracellular domain binds to specific growth factors, while the intracellular domain transmits the growth signal. Of particular interest is the overexpression of the HER-2/neu protein, also called p185
her2
, encoded by the HER-2 gene. This gene is located in the long arm of chromosome 17 at 17q21. The HER-2/neu protein, a 185-kD transmembrane glycoprotein receptor, exhibits intracellular tyrosine kinase activity and contains an extracellular ligand-binding domain that possesses partial structural homology to that of the epidermal growth-factor receptor itself—a well-known transducer of mitotic stimuli.[73,74]

Like the epidermal growth-factor receptor, HER-2/neu receptor expression appears to reflect increased proliferative activity in tumors. Amplification of the HER-2/neu gene and/or overexpression of its messenger RNA (mRNA) and protein have been identified in many human cancers and are seen in 25% to 30% of breast cancers,[75] suggesting that these abnormalities may contribute to malignant transformation and tumorigenesis.[76] In fact, HER-2 overexpression has been correlated with poor outcome in patients with breast cancer.[77,78]

Trastuzumab

A recombinant humanized monoclonal antibody that binds specifically to the extracellular domain of p185
HER2
, (rhuMab HER2) trastuzumab (Herceptin) has demonstrated antitumor activity against HER-2/neu-overexpressing metastatic breast cancer in phase II and III trials.[79-81] Its activity may be explained by at least three mechanisms of action: The antibody may (1) antagonize the function of the growth-signaling properties of the HER-2 system; (2) signal immune cells to attack and kill tumor cells; and (3) increase chemotherapy-induced cytotoxicity.

Single-Agent Trastuzumab—Our experience at Memorial Sloan-Kettering Cancer Center with trastuzumab was reported in 1996. We treated 46 metastatic breast cancer patients whose tumors overexpressed HER-2 (as demonstrated by immunohistochemical analysis using the murine monoclonal antibody 4D5) with trastuzumab at an initial loading dose of 250 mg and subsequent weekly doses of 100 mg. These patients had received a median of three prior chemotherapy regimens.

All toxicities were minimal, and no human antihuman antibodies (HAHA) against trastuzumab were detected in any patient. An overall response rate of 11.6% was observed, including one complete and four partial remissions. As of this writing, one patient remains in complete remission after > 2.5 years of trastuzumab therapy.

This observation was expanded and confirmed in a multinational trial reported at ASCO 1998 by Cobleigh et al, which evaluated the efficacy and safety of trastuzumab given as a single agent in 222 women with HER-2-overexpressing metastatic breast cancer.[80] Trastuzumab was delivered at an initial loading dose of 4 mg/kg and subsequently at a weekly dose of 2 mg/kg. All patients had been pretreated with chemotherapy: 69% had received adjuvant therapy, 32% had had one regimen for metastatic disease, 68% had had two regimens, and 25% had received prior high-dose chemotherapy.

After a median follow-up of 11 months, the investigator-determined overall response rate was 21% (95% CI, 16% to 27%), with a 4% rate of complete remissions. The independent response evaluation committee–determined response rate was 15% (95% CI, 10% to 20%). The median response duration was 8.4 months. Reduction in cardiac ejection fraction was observed in nine patients, of whom six were symptomatic; all either had received prior anthracycline therapy or had a significant cardiac history at entry.

In summary, trastuzumab has a favorable toxicity profile, is active as a single agent in women with HER-2-overexpressing metastatic breast cancer, and induces durable objective tumor responses.

Trastuzumab Combined With Chemotherapy—Slamon et al presented the results of a phase III trial of trastuzumab in 469 patients with HER-2-overexpressing metastatic breast cancer at the 1998 ASCO meeting.[81] This trial was based on observations in preclinical models of synergy between
trastuzumab and some chemotherapeutic agents, in particular, doxorubicin and paclitaxel. For example, Baselga et al demonstrated marked synergistic antitumor activity for paclitaxel plus antibody against HER-2–overexpressing mammary carcinoma cells.[82]

In the phase III trial, patients received either doxorubicin (60 mg/m²) plus cyclophosphamide (600 mg/m²), if they had not received doxorubicin in the adjuvant setting, or paclitaxel (175 mg/m²), if they had been previously treated with an anthracycline. Half the patients were randomized to also receive trastuzumab, concurrent with chemotherapy.

At a median follow-up of 10.5 months, chemotherapy plus trastuzumab showed significant advantages over chemotherapy alone with respect to both response rate (62% vs 36.2%) and time to disease progression (8.6 vs 5.5 months). These benefits of chemotherapy-trastuzumab were unaccompanied by any major increase in severe adverse events, with one notable exception. A syndrome of myocardial dysfunction similar to the syndrome that has been observed with anthracyclines was reported more often with doxorubicin-cyclophosphamide plus trastuzumab (26%) than with chemotherapy alone (6%), paclitaxel alone (1%) or paclitaxel plus trastuzumab (11%).[83] These data indicate that the addition of trastuzumab to chemotherapy significantly augments antitumor efficacy. Also, preliminary analysis of both risk and benefit favors the regimen of trastuzumab plus paclitaxel.

In an attempt to further exploit this apparent synergy, we are presently leading a large phase II trial at Memorial Sloan-Kettering Cancer Center that is evaluating the therapeutic efficacy and safety of paclitaxel given as a weekly 1-hour infusion together with weekly trastuzumab in patients with metastatic breast cancer who either do or do not show immunohistochemical overexpression of HER-2/neu. Trastuzumab also is being integrated into CALGB trial 9840, which is comparing weekly 1-hour paclitaxel plus trastuzumab to 3-hour paclitaxel every 3 weeks plus trastuzumab.

Conclusions

It is evident that the conquest of metastatic breast cancer is still a major challenge. Since a curative treatment is elusive at present, the clinician must always evaluate the delicate equilibrium between response of the disease and iatrogenic toxicity, so as to alleviate symptoms and prolong survival with minimal compromise in quality of life. On the other hand, the continuous search for and experimentation with new chemotherapeutic and biological approaches offer much promise for the future.

References:

Source URL:
http://www.cancernetwork.com/oncology-journal/update-management-advanced-breast-cancer-1

Links:
[1] http://www.cancernetwork.com/review-article
[2] http://www.cancernetwork.com/oncology-journal
[5] http://www.cancernetwork.com/authors/monica-fornier-md
[6] http://www.cancernetwork.com/authors/pamela-n-munster-md
[7] http://www.cancernetwork.com/authors/andrew-d-seidman-md