Topics:

COX-2 Inhibition in Clinical Cancer Prevention

COX-2 Inhibition in Clinical Cancer Prevention

ABSTRACT: Colorectal cancer is an excellent model for studying cancer prevention by means of secondary (eg, polypectomy to remove a precursor adenoma) and primary (chemoprevention) strategies. Evidence has shown that regular users of aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) have a reduction in risk of colorectal cancer. A possible mechanism of this benefit is decreased prostaglandin production, which is achieved through inhibition of cyclooxygenase (COX) activity, and possibly other pathways. Two isoforms of COX—COX-1 and COX-2—have been identified. COX-2 is expressed in colorectal adenomas and carcinomas, both in humans and rodents. Inhibition of COX-2 has been shown to decrease the incidence of carcinogen-induced neoplasia in rats and to lower the incidence of adenomas in murine models. Several COX-2 inhibitors, with the potential for less toxicity than that associated with traditional NSAIDs, are under development. This paper reviews potential chemoprevention of colorectal cancer using COX-2 inhibitors in patients at increased risk, eg, patients with familial adenomatous polyposis, hereditary nonpolyposis colorectal cancer, and sporadic adenomas. Included are the rationale for use of such agents, results of a study showing a significant reduction in adenoma burden in familial adenomatous polyposis patients who received the selective COX-2 inhibitor celecoxib (Celebrex), and the design of other ongoing or planned clinical trials. [ONCOLOGY 15(Suppl 5): 21-26, 2001]

Introduction

In patients who develop adenocarcinomas, there is typically a
progression from normal epithelium, through some inflammatory, metaplastic, or other
intermediate stage, to dysplasia and invasive cancer. The progression is by no
means invariable and indeed may be reversible. Colorectal cancer exemplifies
this progression and serves as an excellent model for investigating
opportunities in cancer prevention by means of various secondary (eg,
polypectomy to remove the precursor adenoma) and primary (chemoprevention)
strategies.

We and many others have begun to explore opportunities in colon
cancer chemoprevention through clinical trials involving groups at increased
risk of colorectal cancer: patients with familial adenomatous polyposis,
hereditary nonpolyposis colorectal cancer, and sporadic adenoma. This article
briefly reviews data from our large trial of a selective COX-2 inhibitor,
describes the designs for our current hereditary nonpolyposis colorectal cancer
and familial adenomatous polyposis trials (as well as ongoing sporadic adenoma
trials), and includes comments on trials with other agents.

Familial Adenomatous Polyposis

Patients with familial adenomatous polyposis have a germline
mutation in the adenomatous polyposis coli (APC) gene.[1] The consequence of
this is the development of hundreds of adenomas, typically during adolescence.
If untreated, as by prophylactic colectomy
or proctocolectomy, the risk of colorectal cancer is nearly 100%. Following
colectomy, subjects remain at risk of duodenal carcinoma and, if proctectomy is
not performed, of rectal cancer; these areas have hence been targeted in
surveillance and chemoprevention interventions.

Historically, cancer prophylaxis has consisted of colectomy
followed by proctosigmoidoscopic surveillance and ablation of recurrent rectal
polyps, or more recently and aggressively, prophylactic proctocolectomy with
restorative ileal pouch reservoir/anal anastomosis. Management of risk of
duodenal neoplasia has been particularly vexing because of the variable natural
history of duodenal adenomas; the lack of effective, safe endoscopic measures to
ablate the flat, spreading lesions; and the morbidity associated with aggressive
surgical intervention—typically pancreaticoduodenectomy.

Though prophylactic surgical interventions are well accepted in
familial adenomatous polyposis, the possibility of medical approaches has been
explored. The nonsteroidal anti-inflammatory drug (NSAID) sulindac has been
reported to cause complete or near-complete regression of rectal adenomas,
initially in uncontrolled trials[2-4] and later in placebo-controlled
investigations.[5] More modest regression of rectal adenomas has been reported
in two larger placebo-controlled studies.[6,7] No cases of complete regression
were observed, and adenomas recurred within several months of cessation of the
sulindac.[5,6] No long-term efficacy studies of sulindac have been carried out,
and there are case reports of cancers occurring while taking sulindac.[8]

Hereditary Nonpolyposis Colorectal Cancer

Hereditary nonpolyposis colorectal cancer has until recently
been a clinical diagnosis involving the familial pattern of early-onset and/or
multiple primary colorectal cancer, with or without the presence of certain
extracolonic tumors. In many families colon tumors cluster in the right colon.
Adenomas may be completely absent and rarely number more than a few. The mode of
inheritance for hereditary nonpolyposis colorectal cancer is autosomal dominant,
with penetrance for colorectal cancer estimated at about 80% by age 70. The mean
age at cancer onset is approximately 45 years but ranges from 20 to 80+ years,
thus overlapping with the age distribution of sporadics.

Stomach and small bowel adenocarcinomas occur in excess, but are
sufficiently infrequent that surveillance is not usually recommended. In
addition to colorectal and other gastrointestinal tumors, hereditary
nonpolyposis colorectal cancer includes a number of extraintestinal tumors.
Lacking any pathognomonic features, the significance of any given tumor in a
particular patient is problematic. Tumors most commonly involve the endometrium,
followed by the ovary and the uroepithelium (ureter and renal pelvis). Peculiar
skin tumors (sebaceous adenoma, carcinoma, and keratoacanthoma) occur in a
subset of families with the so-called Muir-Torre syndrome.

Management

As in familial adenomatous polyposis, the management of
hereditary nonpolyposis colorectal cancer involves recognition of risk, followed
by appropriate surveillance and surgical intervention. All must be enhanced,
compared to the average-risk patient. In a sufficiently striking family,
colorectal cancer risk to offspring of affected parents approaches 50%.
Molecular genetic testing will detect mutations in one of the "hereditary
nonpolyposis colorectal cancer genes" in up to 85% of families.

Assuming such a mutation is identified, offspring of affected
parents can be segregated into two groups: those at population risk
(noncarriers) and those whose risk approaches 100% (carriers). In carriers,
colonoscopy is recommended, beginning at age 20 to 30 and repeated at intervals
of 1 to 5 years (the broad range reflects a lack of hard data and a lack of
consensus among experts). Noncarriers will require no further enhanced
evaluation, assuming accuracy of the genetic testing.

When adenocarcinomas are detected, subtotal colectomy with
ileorectal anastomosis is urged. Residual risk to the rectum exists
postcolectomy, but its magnitude is uncertain and probably not great enough to
warrant proctectomy. The approach to the patient with an adenoma is uncertain.
Most would perform simple endoscopic polypectomy, but the possibility of
prophylactic colectomy may be increasingly considered in known mutation
carriers, particularly when difficult-to-remove right-sided sessile lesions are
involved. Surveillance for extracolonic tumors has received little attention.

Molecular Advances

The chronology of molecular advances in hereditary nonpolyposis
colorectal cancer is interesting. Unlike familial adenomatous polyposis, there
was no good clue as to the possible location of a susceptibility locus, though
several "candidate" loci, such as the APC, p53, and DCC (deleted in
colorectal carcinoma) genes, were evaluated and excluded. Rather, establishing
genetic linkage in hereditary nonpolyposis colorectal cancer required a search
through the human genome, facilitated by the developing library of known, linked
genetic polymorphisms.

In 1993 such linkage was established to a locus on chromosome 2
and quickly confirmed. Within a year, the gene had been cloned and found to show
homology in nucleotide sequence to a member of a yeast DNA "mismatch
repair" gene (MutS). Because linkage studies at this locus had failed to
account for a majority of families that appeared to have hereditary nonpolyposis
colorectal cancer, additional loci were evaluated and a second gene identified.
When cloned, this gene was also found to show homology to a member of the yeast
mismatch repair family of genes.

It was then concluded that perhaps other human genes from this
mismatch repair family might also account for cases of hereditary nonpolyposis
colorectal cancer. The library of human DNA sequences was searched to determine
if there were other areas that showed significant homology to the other
representatives of the mismatch repair genes of lower species. Several
additional human mismatch repair genes were identified and found to account for
a small proportion of hereditary nonpolyposis colorectal cancer families.

As in the case of familial adenomatous polyposis, each of these
discoveries carried potential implications for management. Establishment of
linkage enabled recognition of carriers of susceptibility through performance of
linkage analysis utilizing polymorphic flanking markers. Cloning of the genes
enabled direct testing of individual affected members of hereditary nonpolyposis
colorectal cancer families, without having to resort to linkage analysis.

Pages

 
Loading comments...

By clicking Accept, you agree to become a member of the UBM Medica Community.