Topics:

Paclitaxel and Epirubicin as First-Line Therapy for Patients With Metastatic Breast Cancer

Paclitaxel and Epirubicin as First-Line Therapy for Patients With Metastatic Breast Cancer

ABSTRACT: Paclitaxel (Taxol) has aroused considerable interest for its high single-agent activity in breast cancer and novel mechanism of action. Epirubicin (Farmorubicin), the 4'epimer of doxorubicin (Adriamycin), also has high activity in breast cancer, with the advantage of a lower rate of toxic side effects—especially cardiac effects—compared with its parent compound. The combination of paclitaxel and doxorubicin has yielded response rates between 63% and 94% in phase I/II studies, but authors reported severe cardiac toxic events. The goal for the current study was to evaluate the combination of paclitaxel and epirubicin, focusing mainly on cardiac toxicity. Of a total of 85 patients entered, 68 patients with metastatic breast cancer were evaluable. Nearly 20% had primary metastatic breast cancer with large tumors. Half had received adjuvant chemotherapy. Study medication in Group A consisted of 60 mg/m² epirubicin given over 1 hour, followed by paclitaxel 175 mg/m² administered as a 3-hour IV infusion. In Group B, 90 mg/m²epirubicin was combined with 175 mg/m² paclitaxel, delivered as for Group A. The main toxicity in both groups was neutropenia. In Group A, the paclitaxel dose could be escalated to 200 mg/m² in 15 patients and to 225 mg/m² in 7 patients; dose reduction due to severe neutropenia was necessary in 11 patients. No cardiac adverse events were reported in Group A. In Group B, only one patient could be escalated to 200 mg/m², but three patients required a dose reduction. In this group, one patient had a decrease of left ventricular ejection fraction of more than 10% without any clinical signs. Of 43 patients in Group A and 25 in Group B, the response rate was 67% in Group A and 68% in Group B. The duration of response was 8.2 months in both groups. The combination of paclitaxel 175 mg/m² and epirubicin 60 mg/m² or 90 mg/m² can be safely administered to patients with metastatic breast cancer. The response data were encouraging, and further evaluation is warranted. [ONCOLOGY 11(Suppl):34-37, 1997]

Introduction

Paclitaxel (Taxol) is a taxane known for its high activity in breast and ovarian cancer.[1] Its effectiveness in breast cancer was originally observed by Holmes et al[2] and Reichman et al[3] whose impressive study results indicated that paclitaxel has a high degree of activity compared with other standard chemotherapies for metastatic breast cancer, as well as significant activity in patients who had received multiple prior chemotherapies. In addition, these investigators' studies showed that clinical resistance to doxorubicin (Adriamycin) does not predict resistance to paclitaxel.

These results motivated evaluation of a combination of paclitaxel and anthracyclines, which are the other most active drugs available for treatment of metastatic breast cancer. Holmes et al[4] performed a phase I trial using paclitaxel given by 24-hour intravenous infusion, followed by doxorubicin by 48-hour continuous infusion. The dose-limiting toxicity of that trial was mucositis, which occurred with relatively low doses of both substances. Sledge et al[5] repored a phase I study using the same regimen, but the reverse sequence: the doxorubicin infusion was followed after 4 hours by the 24-hour paclitaxel infusion. The rate of severe mucositis developing with this schedule was very low. The maximum tolerated doses identified were doxorubicin 50 mg/m² and paclitaxel 150 mg/m². In other studies, Dombernowsky et al[6] and Gianni et al[7] reported high response rates (94%) in patients with previously untreated metastatic breast cancer treated with paclitaxel combined with doxorubicin. In those studies, paclitaxel was given as a 3-hour infusion. The main toxicities encountered were neutropenia and febrile neutropenia, and both studies described severe cardiac toxicities in 15% to 25% of patients.

Epirubicin (Farmorubicin), the 4'epimer of doxorubicin, is equieffective but less toxic than its parent compound, particularly with respect to cardiac toxicity.[8] Medline search recalled eight trials in which patients with metastatic breast cancer were comparatively treated with doxorubicin vs epirubicin.[9-17] This phase II study was therefore designed to evaluate the safety and feasibility of the combination paclitaxel/ epirubicin, with particular emphasis on cardiac side effects.

Patients and Methods

Only patients with histologically proven breast cancer were recruited for this trial. Eligible patients were permitted to have undergone one adjuvant chemotherapy or hormone therapy course or one palliative hormone therapy course. The adjuvant therapy could have included anthracyclines dosed to 300 mg/m². Other eligibility requirements included measurable metastasis and normal hematologic, renal, and hepatic function. Patients also were required to be between 18 and 70 years of age and to have a life expectancy of more than 12 weeks.

The first 57 patients entered (Group A) were treated with epirubicin 60 mg/m² intravenously, given as a 1-hour infusion, followed by paclitaxel 175 mg/m² intravenously over 3 hours. The next 28 patients entered (Group B) received epirubicin 90 mg/m² intravenously over 1 hour, followed by the same starting dose and regimen of paclitaxel as was given to Group A. All patients were premedicated with dexamethasone 20 mg given orally 12 and 6 hours before paclitaxel, and clemastine (Tavist) 2 mg intravenously and ranitidine (Zantac) 50 mg intravenously 30 minutes prior to paclitaxel. Patients with congestive heart failure were not eligible for the study.

Study Design

Cardiac monitoring involved evaluation of left ventricular ejection fraction after every second cycle. Paclitaxel dose escalation was permitted in 25 mg/m² steps to a maximum of 225 mg/m², assuming a neutrophil nadir of 1or more x 109/L, a thrombocyte nadir of 100 or more x 109/L, and peripheral neuropathy lower than grade 2, without granulocyte colony-stimulating factor support. In case of higher grades, the paclitaxel dose could be reduced to 100 mg/m², again in 25 mg/m² steps.

Results

Of 57 and 28 patients enrolled in Groups A and B, respectively, 43 patients in Group A and 25 patients in Group B were evaluable for response and toxicity. The median age of patients entered in study groups A and B was 51 and 55 years, respectively, and the median Eastern Cooperative Oncology Group performance index for all patients was 0. The majority of entered patients were postmenopausal (Group A, 62%; Group B, 76%), and most had poorly differentiated tumors (Group A, 63%; Group B, 74%). Adjuvant chemotherapy had been administered to 51% of patients in Group A and 36% of patients in Group B.

Nearly 20% of patients had primary metastatic breast cancer with a large tumor at the primary site. The localization of metastases is summarized in Table 1. More than 80% of the patients had two or more lesions (Table 2).

Toxicity

The main toxicity encountered was neutropenia. No febrile episodes occurred in Group A, but there were two episodes in Group B. World Health Organization grade 3 or 4 neutropenia was reported in 80.9% of the courses overall. Thrombocytopenia and anemia were observed in less than 1% of the courses (Table 3). Alopecia was observed in all patients treated with more than two cycles. No peripheral neuropathy World Health Organization grade greater than 2 was reported and myalgia World Health Organization grade 3 was noted in only 1% of cycles. Severe nausea and emesis were observed in 2% of the cycles (Table 4). No incidence of mucositis was described.

To date, no cardiac toxicity has been seen. The left ventricular ejection fraction was checked by echocardiography or cardiac scintigraphy in Group A, but one episode without clinical signs occurred in Group B.

Dose Escalation

In 15 patients from Group A we were able to escalate the paclitaxel dose to 200 mg/m² and in seven of these patients further escalation to 225 mg/m² was possible. In Group B, only one patient could be escalated to 200 mg/m² and no patient was escalated to 225 mg/m². In Group A, severe neutropenia necessitated reduction of the paclitaxel dose to 135 mg/m² in 11 patients, and further to 110 mg/m² in four of them. In Group B, three patients required dose reduction to 135 mg/m²

Response

Response rate was not a primary concern of this study, but it is one of the checkpoints of oncology treatment. In this poor-prognosis study group we achieved an overall response rate of 68% in Group A and 71% in Group B (Table 5). In 50% of patients who attained a remission, response occurred after the second cycle of treatment, while 25% of the patients had their best response after the fourth cycle, and 25% after the sixth cycle.

The median follow-up was 14.1 months in Group A and 8.2 months in Group B. The median progression-free interval was 8.2 months in both groups with a range of 5.3 to 11.3 months in Group A and 7.90 to 8.5 months in Group B. For patients in Group A, the median progression-free interval was 12.5 months (95% confidence interval [CI], 9.7 to 15.3) for those attaining a complete response and 8.1 months (95% CI 6.7 to 10.3) for those with a partial response. In Group B, the median progression-free interval for the patients with a complete response has not been reached, but patients with a partial response had an interval of 8.2 months (95% CI, 7.8 to 8.5). The median overall survival for those in Group A was 15.9 months (95% CI, 12.8 to 19), whereas in Group B the median survival has not been reached.

Discussion

The combination of paclitaxel 175 mg/m²and epirubicin 60 or 90 mg/m² showed remarkable efficacy against metastatic breast cancer with an overall response of 68% in the group treated with epirubicin 60 mg/m² and 71% in those treated with epirubicin 90 mg/m². The treatment was generally well tolerated, although the higher epirubicin dose induced more severe neutro penia and one case of cardiotoxicity. The nonhematologic toxicities were mild and no cases of severe mucositis or peripheral neuropathy were reported. The higher epirubicin dose did not prolong progression-free survival. The observed remission rates were lower than those reported in the study from Gianni et al,[7] but the progression-free interval was in the same range.

In October 1996, the German AGO Study Group initiated a phase III trial comparing the combination of paclitaxel 175 mg/m² and epirubicin 60 mg/m² with the standard combination of epirubicin 60 mg/m² and cyclophosphamide (Cytoxan) 600 mg/m² as first-line treatment of metastatic breast cancer.

References

1. Rowinsky EK, McGuire WP, Donehower RC: The current status of Taxol. Principles and Practice of Gynecology Oncology Updates 1:1-16, 1993.

2. Holmes FA, Walters RS, Theriault RC, et al: Phase II trial of taxol, an active drug in treatment of metastatic breast cancer. J Natl Cancer Inst 83:1797-1805, 1991.

3. Reichman BS, Seidman AD, Crown JP, et al: Paclitaxel and recombinant granulocyte-stimulating factor as initial chemotherapy for metastatic breast cancer. J Clin Oncol 11:1943-1951, 1993.

4. Holmes FA, Frye D, Valero V, et al: Phase I study of taxol and doxorubicin for metastatic breast cancer (abstract 66). Proc Am Soc Clin Oncol 11:60, 1992.

5. Sledge GW Jr, Robert N, Sparano JA, et al: Paclitaxel (Taxol)/doxorubicin combinations in advanced breast cancer: The Eastern Cooperative Oncology Group experience. Semin Oncol 21(suppl 8):15-18, 1994.

6. Dombernowsky P, Gehl J, Ejlersen B, et al: Treatment of metastatic breast cancer with paclitaxel and doxorubicin. Semin Oncol 22(suppl 15):13-17, 1995.

7. Gianni L, Munzone E, Capri G, et al: Paclitaxel by 3-hour infusion in combination with bolus doxorubicin in women with untreated metastatic breast cancer: High antitumor efficacy and cardiac effects in a dose finding and sequence finding study. J Clin Oncol 13:2688-2699, 1995.

8. Praga C, Trave F, Petroccione A: Anthracycline-induced cardiotoxicity and its relevance in cancer treatment, in Nimmo WS, Tucker GT, (eds): Clinical Measurements in Drug Evaluation. London, Wolfe Publishing, 1991.

9. Brunbilla C, Ross A, Bonfonte V, et al: Phase II study of doxorubicin vs epirubicin in advanced breast cancer. Cancer Treat Rep 70:261-266, 1986.

10. Lawton PA, Ostrowski M, Young T: Efficacy and toxicity of single-agent chemotherapy in advanced breast cancer (abstract). Br J Cancer 61:177, 1990.

11. Pervodchikova NI, Valvere VJ: Comparative evaluations of Farmorubicin and Adriamycin in breast cancer, in Berkada B, et al, (eds): Progress in Comparative Antimicrobial and Anticancer Chemotherapy, Vol 3. Istanbul Ecomed, 1987.

12. Hortobagyi GN, Yu P, Hyikan SW, et al: A comparative study of doxorubicin and epirubicin in patients with metastatic breast cancer. Am J Clin Oncol 12:57-62, 1989.

13. Jain K, Casper ES, Geller NL, et al: A prospective randomized comparison of epirubicin and doxorubicin in patients with advanced breast cancer. J Clin Oncol 3:818-826, 1985.

14. Taguchi T, Ogawa M, Izuo M, et al: A prospective randomized trial comparing epirubicin and doxorubicin in advanced recurrent breast cancer. J Cancer Chemother 13:3498-3507, 1986.

15. van Osteroom AT, Andersson M, Wildinos M, et al: Adriamycin (A) versus 4-epi-adriamycin (E). Report of a second-line randomized phase II study in advanced breast cancer (Trial 10811). (abstract 1.6) Proceedings IV EORTC Breast Cancer Working Conference, London, 1987.

16. Perez DJ, Harvey VJ, Robinson BA, et al: A randomized comparison of single-agent doxorubicin and epirubicin as first-line cytotoxic therapy in advanced breast cancer. J Clin Oncol 9:2148-2152, 1991.

17. Mouridsen HT, Alfthan C, Bastholt L, et al: Current status of epirubicin (F grouporubicin) in the treatment of solid tumors. Acta Oncol 29:257-285, 1990

 
Loading comments...

By clicking Accept, you agree to become a member of the UBM Medica Community.