Treatment of Dyspnea in Cancer Patients

Treatment of Dyspnea in Cancer Patients

ABSTRACT: Dyspnea is defined as a sensation of difficult or uncomfortable breathing. The symptom is highly prevalent among cancer patients with and without direct lung involvement. The gold standard of assessment is based on patient self-report. Objective measures such as respiratory rate, oxygen saturation, and arterial blood gas measurements frequently do not correlate with the subjective experience of dyspnea. Consistent with patient goals and the disease context, treatment should be directed at removing the underlying cause when possible. Fast, safe, and effective symptomatic relief of dyspnea is possible whether or not identifiable reversible causes exist. In fact, relieving symptoms can be considered in conjunction with treating specific reversible causes. Opioids are the first-line therapy for relief of dyspnea symptoms. When prescribed appropriately, respiratory depression is not a significant concern. In the rare cases in which opioids are unable to control dyspnea, sedation is an effective, ethical, and legal option. [ONCOLOGY 16:745-760, 2002]

Dyspnea is defined as a sensation of difficult or uncomfortable breathing.[1]
Its prevalence at different stages of cancer has been reported to range from 21%
to 90%.[2-4] It is a common symptom among patients who have primary or
metastatic involvement of the lung, but it is also a common complaint of
patients with no direct lung involvement. The National Hospice Study found that
24% of patients with dyspnea had no known cardiopulmonary process to explain the
condition.[4] Moreover, cancer is often superimposed on patients with
significant underlying cardiopulmonary problems, such as chronic obstructive
pulmonary disease (COPD) and congestive heart failure (CHF). Thus, dyspnea is a
significant clinical problem throughout the entire spectrum of cancer, from
first diagnosis to end stages.


The pathophysiology of dyspnea is still not well understood. Most studies
have focused on either healthy volunteers with experimentally induced dyspnea or
patients with COPD. Studies directly assessing dyspnea in cancer patients have
been limited due to the practical constraint of recruiting cancer patients and
to ethical constraints making placebo-controlled studies problematic.

Dyspnea is believed to be multifactorial, with central, peripheral, and
cognitive/emotional components. The respiratory center in the medulla
coordinates the activity of the diaphragm, the intercostal muscles, and
accessory muscles of respiration. It receives information from central and
peripheral chemoreceptors, peripheral mechanoreceptors, and the cerebral cortex.
Respiratory effort, hypercapnia, hypoxia, pulmonary stretch, pulmonary
irritants, and mismatch between what the brain expects and the feedback it
receives are all variables that play a role in dyspnea.[5]

The following three clinical examples illustrate some of these underlying

First, breathing against increased resistance, as in COPD, or breathing with
weakened muscles, as in cachexia, causes increased respiratory work that is
perceived as dyspnea. Most studies point to this increased respiratory work as a
major component of dyspnea.

Second, the chemical states associated with hypercapnia and hypoxia can
increase dyspnea independently of increased respiratory effort.[6,7] Medullary
chemoreceptors sense hypercapnia, and carotid body chemoreceptors sense hypoxia.
Despite common belief, hypoxia appears to have a less significant role in
dyspnea. Only moderate-to-severe levels of hypoxia trigger the peripheral

Third, when researchers limit a subject’s inspiratory flow rate, dyspnea
results despite no change in respiratory work or chemical status.[9]

These three examples demonstrate that dyspnea is indeed multifactorial, but
they do not explain all cases of dyspnea. Given its multiple possible causes and
our deficient knowledge, there is no reliable, objective measure of dyspnea.
Respiratory rate, oxygen saturation, and arterial blood gas determinations do
not correlate directly with dyspnea. For example, patients may be hypoxic but
not dyspneic or dyspneic but not hypoxic. Therefore, the gold standard for the
assessment and treatment of dyspnea must be patient self-report.

Visual analog[10] and Borg[11] scales are most commonly used to
quantitatively rate dyspnea. These measures are simple, reproducible, and have
been validated for use in clinical research. Visual analog scales typically have
a 100-mm line with verbal descriptors such as "no breathlessness" and
"worst possible breathlessness" at the ends. A patient merely marks
his level of dyspnea on this line.


For a patient presenting with dyspnea, the search for a cause begins with a
thorough history and physical examination. Past medical history, smoking
history, occupational history, and prior radiation or chemotherapy may provide
important diagnostic clues. A physical examination in conjunction with simple
studies such as pulse oximetry, complete blood count, and a chest x-ray will
most often lead to a diagnosis. When the possible benefits of further
investigation exceed the burdens, additional studies may include arterial blood
gas determinations, pulmonary function tests, computed tomography scans,
echocardiograms, or ventilation-perfusion scans.

Dyspnea in cancer patients may be due to the direct or indirect effects of
tumors, the effects of anticancer therapy, or may be unrelated to the cancer.
Possible specific etiologies of dyspnea are listed in Table
. Despite this
extensive list, few studies have systematically categorized the causes of
dyspnea in cancer patients.

Dudgeon and Lertzman performed a prospective analysis of 100 advanced cancer
patients with dyspnea in just such an attempt.[12] They found that 49% had lung
cancer, 65% had lung or pleural involvement, 40% were hypoxic with O2 saturation
< 90%, 12% had PCO2 ³ 45 mm Hg, 52% had a component of bronchospasm,
29% had evidence of cardiac ischemia, CHF, or atrial fibrillation, and 20% had
hemoglobin levels < 10 g/dL.

Pulmonary function tests revealed that 5% had an obstructive pattern, 41% had
a restrictive pattern, and 47% had a mixed obstructive/restrictive pattern. The
median maximum inspiratory pressure was -16 cm H2O (normal: ³ 50 cm
indicating significant muscle weakness. None of the patients had received
chemotherapy linked to pulmonary disease, and 40% had undergone radiation
therapy that encompassed at least a portion of the lungs. The average tally of
potential causes of dyspnea per patient was five. Thus, it is clear that dyspnea
in cancer patients is most commonly multifactorial.


Loading comments...
Please Wait 20 seconds or click here to close