Melanie Wergin, DVM, PhD

home / authors / melanie-wergin-dvm-phd


Site Logo

Monitoring Changes in the Microenvironment During Targeted Therapies

October 1st 2007

This review covers progress to date in the identification of molecular targets on blood vessels in cancers, as well as agents that act on those targets, with emphasis on those currently in clinical trials. Current vascular-targeting therapies comprise two general types—antiangiogenic therapy and antivascular therapy. Advances in antiangiogenic therapies, particularly inhibitors of vascular endothelial growth factors and their receptors, have clarified the capacity of these inhibitors to change tumor-associated vessel structure to a more normal state, thereby improving the ability of chemotherapeutics to access the tumors. The responses of other antiangiogenesis target molecules in humans are more complicated; for example, αvβ3 integrins are known to stimulate as well as inhibit angiogenesis, and cleavage of various extracellular proteins/proteoglycans by matrix metalloproteinases produces potent regulators of the angiogenic process. Antivascular therapies disrupt established blood vessels in solid tumors and often involve the use of ligand-based or small-molecule agents. Ligand-based agents, irrespective of the antiangiogenic capacity of the ligand, target antivascular effectors to molecules expressed specifically on blood vessels, such as aminopeptidase N, fibronectin extra-domain B, and prostate-specific membrane antigen. Small-molecule antivascular agents, which are not targeted to molecules on blood vessels, rely on physical differences between the vasculatures in tumors and those in normal tissues.