Expert Highlights Applications of Proton Therapy in Radiation Oncology

Commentary
Video

The use of proton therapy may offer a more specific depth charge compared with conventional radiation, according to Timothy Chen, MD.

Administering proton therapy to pediatric populations with cancer may serve as a “great application” that helps patients avoid developing mutations and second cancers, says Timothy Chen, MD.

Chen, a board-certified radiation oncologist and medical director of the Central Nervous System Program at Jersey Shore University Medical Center and the director of Proton Therapy in the Department of Radiation Oncology at Hackensack Meridian Health, spoke with CancerNetwork® about the potential applications of proton therapy and benefits this modality may offer compared with standard radiation.

In addition to the potential utility of proton therapy among pediatric populations, Chen highlighted how this technique may demonstrate more precision than others based on what he described as a “depth charge.” For example, it may be possible to administer proton therapy to breast tumors while sparing the lungs from receiving any excess radiation.

Transcript:

Proton therapy is type of radiation but with a different particle hitting the target. If you think about conventional radiation like a pistol, proton [therapy] is like a cannon. It also has a great purpose with what’s called a depth charge. We can set a cannon to be explored at a certain depth. The conventional radiation comes and goes while passing through the structure. With proton therapy, we can say where I want to go and stop right there. With that, there are great applications.

No. 1 is in pediatric [patients with] cancer. Because a child is still growing, the conventional radiation can create mutations, and they could eventually develop a second cancer in their later life. Proton therapy is a particularly great design for pediatric patients [with] cancer; their chance of getting a mutation or a second cancer is smaller.

The second thing is about the depth charge. Because we can set the characteristic of this beam, we can treat quite a large area that’s not accessible with conventional radiation. For example, in breast cancer, the breast sits on top of the chest wall, and as we breathe, the lungs get in [the way and receive] the radiation. But because we can set the depth [with proton therapy], you can confine radiation to the breasts and not touch the lungs.

Newsletter

Stay up to date on recent advances in the multidisciplinary approach to cancer.

Recent Videos
Extravasation with beta emitters may elicit more drastic adverse effects due to their higher radiation dose.
Increasing the use of patient-reported outcomes may ensure that practitioners can fully ascertain the impact of treatment for rare lymphomas.
Photographic and written documentation can help providers recognize inflammatory breast cancer symptoms across diverse populations.
The use of guideline-concordant care in breast cancer appears to be more common in White populations than Black populations.
Retrospective and real-world registry studies may be necessary to guide clinical decision-making for rarer lymphomas with insufficient prospective data.
Extravasation results in exposing healthy tissue to radiation, which can be highly dosed depending on the isotope used for treatment.
Ongoing studies seek to evaluate immunotherapy in earlier lines of therapy for patients with early-stage Hodgkin lymphoma.
Strict inclusion criteria may disproportionately exclude racial minority populations from participating in breast cancer trials.
Related Content