Genomic Testing and Mortality Risk in a Clinicogenomic Cohort of Patients

Article

Researchers identified a correlation between the timing of genomic testing and mortality risk in a clinicogenomic cohort of patients with cancer.

In a research letter published in JAMA Network Open, researchers found an association between the timing of genomic testing and mortality risk in a clinicogenomic cohort of patients with cancer.

“At scale, linked tumor profiles and clinical outcomes could enable researchers to develop rich predictors of treatment effectiveness. However, profiling may be ordered in clinical practice specifically to inform treatment for worsening cancer, introducing selection bias1 into secondary analysis of genomic data,” the authors wrote. “This would manifest not only as systematic differences between patients who entered a cohort and those who did not, but also as differences by timing of cohort entry.”

In this retrospective single-institution cohort study of patients with all stages of lung, breast, colorectal, pancreatic, or urothelial cancer who had tumor profiling under next-generation sequencing protocol, researchers measured the time from diagnosis to genomic testing and time from diagnosis to death. The results were presented according to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.

In total, the cohort consisted of 4777 patients, with the distribution of cancer histology including 2009 patients with lung cancer (42.1%), 1210 with breast (25.3%), 823 with colorectal (17.2%), 413 with urothelial (8.6%), and 322 with pancreatic (6.7%). The overall τ statistic (Tc) was -0.18 (95% CI, -0.21 to -0.15; P < 0.001), suggesting that patients undergoing genomic testing later in their disease trajectories had shorter survival than would normally be anticipated if time to testing were independent of clinical risk.

In subgroup analyses, this association was also detected for patients initially diagnosed with stage I (Tc, -0.18; 95% CI, -0.32 to -0.05), stage II (Tc, -0.16; 95% CI, -0.27 to -0.06), and stage III (Tc, -0.24; 95% CI, -0.32 to -0.15) disease but not stage IV disease (Tc, 0.01; 95% CI, -0.03 to 0.06), which is consistent with a pattern of genomic testing after relapse. Even further, the association was reported across breast (Tc, -0.27; 95% CI, -0.35 to -0.19), colorectal (Tc, -0.20; 95% CI, -0.29 to -0.11), lung (Tc, -0.17; 95% CI, -0.22 to -0.13), pancreatic (Tc, -0.10; 95% CI, -0.20 to 0.00), and urothelial (Tc, -0.27; 95% CI, -0.40 to -0.15) cancer sites.

According to the investigators, outcome events in a cohort such as this are subject to not just immortal time bias, but to temporal selection bias as well. These biases should therefore be considered in genomic data analyses. Notably, studies looking for predictors of recurrence in early-stage disease might be especially vulnerable to this issue.

“Left truncation analyses, which consider patients at risk only after genomic testing, could eliminate immortal time bias if the timing of testing were random,” the authors wrote. “However, if genomic testing is ordered because of progressive cancer, left truncation time could be undesirably associated with clinical risk, systematically excluding patients with a good prognosis at each time point.”

In addition, researchers indicated that by merely restricting analyses to treatments initiated after genomic profiling may also bias a cohort toward patients deemed to be high risk. Instead, it was recommended that the extent of temporal selection bias be measured by calculating the condition Tc for a given cohort.

“If such bias is identified, specialized methods, including copula or transformation models, can be applied to adjust for it,” the authors wrote.

Reference:

Kehl KL, Schrag D, Hassett MJ, Uno H. Assessment of Temporal Selection Bias in Genomic Testing in a Cohort of Patients With Cancer. JAMA Network Open. doi:10.1001/jamanetworkopen.2020.6976

Newsletter

Stay up to date on recent advances in the multidisciplinary approach to cancer.

Recent Videos
Treatment with KRAS inhibitors may help mitigate a common driver of genetic alteration across a majority of pancreatic cancers.
Updated results from the BREAKWATER study seemed to be most impactful to the CRC space, according to Michael J. Pishvaian, MD, PhD.
Future research will aim to assess the efficacy of PIPAC-MMC plus systemic therapy vs systemic therapy alone in patients with peritoneal tumors.
Although small incision surgery may serve as a conduit to deliver PIPAC-MMC, it may confer benefits in the staging and treatment of peritoneal tumors.
Patients with peritoneal metastases were historically associated with limited survival and low consideration for clinical trials.
Combining sotorasib with panitumumab may reduce the burden of disease in patients with KRAS G12C-mutated metastatic colorectal cancer.
Findings from the CodeBreak 300 study have cemented sotorasib/panitumumab as a third-line treatment option for KRAS G12C-mutated colorectal cancer.
Sotorasib plus panitumumab may offer improved survival compared with previously approved treatment options in KRAS G12C-mutated colorectal cancer.
Additional local, regional, or national policy may bolster access to screening for colorectal cancer, according to Aasma Shaukat, MD, MPH.
Related Content