Liquid Biopsy Accurately Detects Mutations in Advanced NSCLC

April 7, 2016

Droplet digital polymerase chain reaction–based plasma genotyping exhibited perfect specificity in identifying EGFR and KRAS mutations in patients with advanced non–small-cell lung cancer.

Droplet digital polymerase chain reaction (ddPCR)-based plasma genotyping-referred to as liquid biopsy-exhibited perfect specificity in identifying EGFR and KRAS mutations in patients with advanced non–small-cell lung cancer (NSCLC), according to the results of a study published in JAMA Oncology.

“We see plasma genotyping as having enormous potential as a clinical test, or assay-a rapid, noninvasive way of screening a cancer for common genetic fingerprints, while avoiding the challenges of traditional invasive biopsies,” said senior author, Geoffrey Oxnard, MD, thoracic oncologist and lung cancer researcher at Dana-Farber and Brigham and Women’s Hospital, in a press release. “Our study was the first to demonstrate prospectively that a liquid biopsy technique can be a practical tool for making treatment decisions in cancer patients.”

According to the press release, the test proved so reliable in the study that the Dana-Farber/Brigham and Women’s Cancer Center this week became the first medical facility in the country to offer it to all patients with NSCLC, either at the time of first diagnosis or of relapse following previous treatment.

Oxnard and colleagues enrolled 180 patients with advanced NSCLC. Patients were either newly diagnosed with the disease (n = 120) or had acquired resistance to prior EGFR kinase inhibitors (n = 60) and were planned for rebiopsy. Patients underwent initial blood sampling and immediate plasma ddPCR screening for EGFR exon 19 deletion, L858R, the EGFR T790M acquired resistance mutation, or KRAS G12X. In addition, patients underwent biopsy for tissue genotyping used to compare the accuracy of ddPCR.

Among the enrolled patients, 80 had EGFR exon19/L858R mutations, 35 had T790M mutations and 25 had KRAS G12X mutations. The median test turnaround time for liquid biopsy was 3 days. In comparison, the median turnaround time for tissue genotyping was 12 days for newly diagnosed patients and 27 days for patients with acquired EGFR inhibitor resistance.

“This long turnaround time is due largely to the practical reality that many patients with newly diagnosed NSCLC require a repeat biopsy to obtain tissue for genotyping, as do all patients with acquired resistance,” the researchers noted.

The liquid biopsy showed 100% positive predictive value for detecting EGFR 19 deletion, L858R, and KRAS mutations. However, it had only a positive predictive value of 79% for T790M mutations. The sensitivity of the test was lower. ddPCR had a sensitivity of 82% for EGFR 19 deletion, 74% for L858R, 77% for T790M, and 64% for KRAS.

The researchers pointed out that “a key limitation of plasma ddPCR is that although this method is adept at rapidly detecting specific targetable mutations, it cannot easily detect copy number alterations and rearrangements. The ddPCR panel assessed in this study thus cannot currently detect targetable alterations in either ALK or ROS1,” two other common mutations in NSCLC.

In an editorial that accompanied the article, P. Mickey Williams, PhD, of Frederick National Laboratory for Cancer Research, and Barbara A. Conley, MD, from the National Cancer Institute, questioned whether or not these results, and the rapid turnaround time for liquid biopsy, could be replicated widely by other institutions.

“However, if this performance were generally applicable, this would indeed be an advance in clinical care, reducing the proportion of patients requiring biopsy, at least in the resistance setting,” Williams and Conley wrote.

“This study is a step in the right direction of preparing needed clinical validation for the use of ctDNA for detection and serial monitoring of clinically relevant tumor mutations. Owing to low sensitivity and high positive predictive value and specificity, this approach is probably best suited for detection of resistance mutations and for serial plasma testing to assess treatment response, and should not replace tumor biopsy assessment for initial treatment decision-making,” they concluded.