Protein in Ovarian Cancers Deactivates Immune System Response

Article

Ovarian cancer progression may be driven by the activation of an endoplasmic reticulum stress response factor that disrupts the function of dendritic cells and, subsequently, antitumor fighting T cells.

Data from a new study has shown that ovarian cancer progression may be driven by the activation of an endoplasmic reticulum (ER) stress response factor called XBP1, which disrupts the function of dendritic cells and, subsequently, antitumor fighting T cells.

XBP1 is part of the ER stress response pathway-also called the unfolded protein response-that can allow tumors to grow and survive when they are deprived of nutrients and oxygen.

“Our findings suggest a strategy whereby a lethal cancer exploits the most conserved arm of the ER stress response in tumor-resident dendritic cells to disrupt their homeostasis, alter their local antigen-presenting capacity, and ultimately evade T cell-mediated immune control,” wrote study author Juan R. Cubillos-Ruiz, an instructor of immunology in medicine at Weill Cornell Medical College, and colleagues in the journal Cell.

“While the ER stress response, and especially XBP1 activation, was previously shown to promote tumorigenesis, we now propose that this integrated cellular pathway further supports malignant progression by inhibiting the development of protective antitumor immunity via manipulation of normal dendritic cell function,” they wrote.

To make this discovery, Cubillos-Ruiz and colleagues examined the tumor microenvironment and found that ovarian cancer promoted the modification of proteins located in the ER, which, in turn, induced XBP1 activation and produced a buildup of lipid molecules within dendritic cells.

The researchers then tested whether or not XBP1 could be targeted. They injected mice with aggressive primary and metastatic ovarian cancer with nanoparticles, microscopic polymers that carried a genetic molecule that can silence the XPB1 gene. Dendritic cells detect the nanoparticles as invaders, and ingest them. Once inside, the nanoparticles delivered the molecule that turns XBP1 off, allowing dendritic cells to tell the immune system to attack the cancer.

“Activating T cell immunity to eliminate tumor cells is the most promising anticancer strategy since the development of chemotherapy, as demonstrated by the shrinkage of melanoma in response to checkpoint blockers,” the researchers wrote. “However, in most cases, the optimal cytotoxic activity of such tumor-reactive T cells is drastically reduced precisely because cancer-associated dendritic cells are unable to support T cell function.”

The results of this analysis show that deletion of XBP1 can transform tumor dendritic cells into ovarian cancer infiltrating T cells. If further developed, targeting XBP1 using nanotechnology-based system may help to slow or prevent the recurrence of ovarian cancers, the researchers wrote.

Related Videos
Brian Slomovitz, MD, MS, FACOG discusses the use of new antibody drug conjugates for treating patients with various gynecologic cancers.
Developing novel regimens may continue to improve survival outcomes of patients with advanced cervical cancer following the FDA approval of pembrolizumab and chemoradiation, says Jyoti S. Mayadev, MD.
Treatment with pembrolizumab plus chemoradiation appears to be well tolerated with no detriment to quality of life among those with advanced cervical cancer.
Jyoti S. Mayadev, MD, says that pembrolizumab in combination with chemoradiation will be seamlessly incorporated into her institution’s treatment of those with FIGO 2014 stage III to IVA cervical cancer following the regimen’s FDA approval.
Domenica Lorusso, MD, PhD, says that paying attention to the quality of chemoradiotherapy is imperative to feeling confident about the potential addition of pembrolizumab for locally advanced cervical cancer.
Guidelines from the Society of Gynecologic Oncology may help with managing the ongoing chemotherapy shortage in the treatment of patients with gynecologic cancers, according to Brian Slomovitz, MD, MS, FACOG.
Interim data reveal favorable responses in patients with low-grade serous ovarian cancer treated with avutometinib plus defactinib, according to Susana N. Banerjee, MD.
Brian Slomovitz, MD, MS, FACOG, notes that sometimes there is a need to substitute cisplatin for carboplatin, and vice versa, to best manage gynecologic cancers during the chemotherapy shortage.
Findings from the phase 3 MIRASOL trial support mirvetuximab soravtansine as a standard treatment option for platinum-resistant ovarian cancer, according to Ritu Salani, MD.
Trastuzumab deruxtecan appears to elicit ‘impressive’ responses among patients with HER2-positive gynecologic cancers regardless of immunohistochemistry in the phase 2 DESTINY-PanTumor02 trial.
Related Content