Author | Christine H. Chung, MD


Implications of the New Face of Head and Neck Cancer

September 15, 2015

Although screening methods for HPV-OPSCC have not yet been developed, population-based prevention may be achievable through HPV vaccination, but only if concerted efforts are made to increase vaccine uptake in the United States.

Infusion Reactions to Monoclonal Antibodies for Solid Tumors: Immunologic Mechanisms and Risk Factors

February 02, 2009

The use of engineered monoclonal antibodies as antineoplastic therapy has been a significant advance within the past 15 years. These agents target various receptors and ligands required for the proliferation, survival, or maintenance of angiogenesis of tumors. Currently there are several agents approved by the US Food and Drug Administration for clinical use in solid tumors. Bevacizumab (Avastin) is a humanized monoclonal antibody that targets the vascular endothelial growth factor (VEGF) and inhibits angiogenesis, and is currently approved for the treatment of colorectal, lung, and breast cancer (Avastin package insert, 2008). Trastuzumab (Herceptin) inhibits the HER2/neu receptor, and is utilized in both the adjuvant and palliative settings in breast cancer (Herceptin package insert, 2008).

Commentary (Chung/Johnson): Targeting the Epidermal Growth Factor Receptor

February 02, 2006

The epidermal growth factor receptor (EGFR) promotes the growth of different cell types and has been implicated in tumorigenesis. The EGFR comprises a family of four structurally similar tyrosine kinases with a complex link to downstream signaling molecules that ultimately regulate key cell processes. Anti-EGFR agents have been developed as promising therapeutic anticancer targets, and some have been recently approved for the treatment of non-small-cell lung cancer and colon cancer. The two anti-EGFR therapies with the greatest clinical application are monoclonal antibodies that block the binding of ligands to EGFR and small-molecule tyrosine kinase inhibitors that inhibit the binding of adenosine triphosphate to the internal tyrosine kinase receptor of EGFR. We attempt to give an overview of the EGFR function and biology, focusing on the most important clinical findings and applications of EGFR inhibitors in lung and head and neck cancer.