News
Clinical Topics
Integrative Care
Global Bulletin
All News
Approval Alert
Media
2 Minute Drill
Around the Practice
Between the Lines
Clinical Consult
Expert Interviews
Face Off
Medical World News
Morning Rounds
OncView
Podcasts
Readout 360
Satellite Sessions
Sponsored Media
Training Academy
Year in Review
Conferences
Publications
All Journals
For Authors
Tumor Board
Events
Frontline Forum
CME/CE
Resources
Contemporary Concepts
Awareness Month
Interactive Tools
Nurse Practitioners/Physician's Assistants
Partners
Sponsored
Subscribe
Print Subscription
eNewsletter

logo
Spotlight
Around the Practice
Between the Lines
Contemporary Concepts
Journal
OncView
Podcasts
Readout 360
2022 ASCO Genitourinary Cancers Symposium Urothelial Cancer Updates
CancerNetwork® Inaugural Face-Off
Contemporary Concepts in Hematologic Oncology
Insights from Experts at Mayo Clinic on Translating Evidence to Clinical Practice
Optimizing Outcomes in Patients with HER2+ Metastatic Breast Cancer
Clinical
Acute Myeloid Leukemia
Brain Cancer
Breast Cancer
Gastrointestinal Cancer
Genitourinary Cancer
Gynecologic Cancer
Hematology
Leukemia
Lung Cancer
Lymphoma
Pediatric Cancers
Skin Cancer
Clinical Topics
Integrative Care
Global Bulletin
All News
Approval Alert
2 Minute Drill
Around the Practice
Between the Lines
Clinical Consult
Expert Interviews
Face Off
Medical World News
Morning Rounds
OncView
Podcasts
Readout 360
Satellite Sessions
Sponsored Media
Training Academy
Year in Review
Conferences
All Journals
For Authors
Tumor Board
Frontline Forum
CME/CE
Contemporary Concepts
Awareness Month
Interactive Tools
Nurse Practitioners/Physician's Assistants
Partners
Sponsored
Print Subscription
eNewsletter
Advertisement
Breast Cancer
| Kidney Cancer
| Leukemia
| Lymphoma
| Multiple Myeloma
| Non-Small Cell Lung Cancer (NSCLC)
| Small Cell Lung Cancer (SCLC)
| Adverse Effects
| Biomarkers
| Bladder Cancer
| Brain Cancer
| Cervical Cancer
| Colorectal Cancer
| Endometrial Cancer
| Esophageal Cancer
| Gastrointestinal Cancer
| Genitourinary Cancers
| Gynecologic Cancers
| Head & Neck Cancer
| Hematology
| Hormone-related Cancers
| Immunotherapy
| Infection
| Liver Cancer
| Lung Cancer
| Mesothelioma
| Neuroendocrine Tumors
| Oncology
| Ovarian Cancer
| Ovarian Cancer Clincal Consult
| Pancreatic Cancer
| Pediatric Cancers
| Prostate Cancer
| Radiation Oncology
| Sarcoma
| Screening
| Skin Cancer & Melanoma
| Surgery
| Thoracic Malignancies
| Thyroid Cancer
View All >>
  • Adverse Effects
  • Biomarkers
  • Bladder Cancer
  • Brain Cancer
  • Breast Cancer
  • Cervical Cancer
  • Colorectal Cancer
  • Endometrial Cancer
  • Esophageal Cancer
  • Gastrointestinal Cancer
  • Genitourinary Cancers
  • Gynecologic Cancers
  • Head & Neck Cancer
  • Hematology
  • Hormone-related Cancers
  • Immunotherapy
  • Infection
  • Kidney Cancer
  • Leukemia
  • Liver Cancer
  • Lung Cancer
  • Lymphoma
  • Mesothelioma
  • Multiple Myeloma
  • Neuroendocrine Tumors
  • Non-Small Cell Lung Cancer (NSCLC)
  • Oncology
  • Ovarian Cancer
  • Ovarian Cancer Clincal Consult
  • Pancreatic Cancer
  • Pediatric Cancers
  • Prostate Cancer
  • Radiation Oncology
  • Sarcoma
  • Screening
  • Skin Cancer & Melanoma
  • Small Cell Lung Cancer (SCLC)
  • Surgery
  • Thoracic Malignancies
  • Thyroid Cancer

SPOTLIGHT -

Around the Practice
| Between the Lines
| Contemporary Concepts
| Journal
| OncView
| Podcasts
| Readout 360
| 2022 ASCO Genitourinary Cancers Symposium Urothelial Cancer Updates
| CancerNetwork® Inaugural Face-Off
| Contemporary Concepts in Hematologic Oncology
| Insights from Experts at Mayo Clinic on Translating Evidence to Clinical Practice
| Optimizing Outcomes in Patients with HER2+ Metastatic Breast Cancer

UFT and Its Metabolites Inhibit Cancer-Induced Angiogenesis via a VEGF - Related Pathway

October 1, 2000
Yuji Basaki, MSC
Lumi Chikahisa, MSC
  • Kazutaka Miyadera, PhD
  • Jiro Shibata, MSC
  • Konstanty Wierzba, PhD
  • Yuji Yamada, PhD

Publication
Article
OncologyONCOLOGY Vol 14 No 10
Volume 14
Issue 10

Treatment with UFT for spontaneous lung metastasis of murine renal carcinoma (RENCA) after resection of the primary tumor has resulted in significant prolongation of the life span of tumor-bearing animals. UFT inhibited the growth of metastatic nodules in the lung, apparently via decreased density of microvessels in the metastatic foci. Subsequent experiments used dorsal air sac assay to directly trace newly forming microvessels.

ABSTRACT: Treatment with UFT for spontaneous lung metastasis of murine renal carcinoma (RENCA) after resection of the primary tumor has resulted in significant prolongation of the life span of tumor-bearing animals. UFT inhibited the growth of metastatic nodules in the lung, apparently via decreased density of microvessels in the metastatic foci. Subsequent experiments used dorsal air sac assay to directly trace newly forming microvessels. UFT abrogated the process of angiogenesis, induced by the RENCA cells, in a dose-dependent manner. The inhibitory effect appeared to originate from tegafur, a component of UFT, and from its known metabolites: fluorouracil (5-FU), g-hydroxybutyric acid (GHB), and g-butyrolactone (GBL). The inhibition of angiogenesis by UFT appeared to be a common phenomenon, also observed in other human cancer cell lines characterized by an excessive production of vascular endothelial growth factor (VEGF)-such as gastric, lung, and colon cancers. In vitro analysis revealed that 5-FU and g-hydroxybutyric acid regulated VEGF-dependent responses of human umbilical vein endothelial cells. Dorsal air sac assay revealed that UFT, 5-FU, and g-hydroxybutyric acid strongly inhibited the angiogenesis induced by recombinant human VEGF. These data suggest that the antiangiogenic activity of UFT is at least partially associated with an ability of the metabolites of UFT to interfere with VEGF-dependent responses of vascular endothelial cells. [ONCOLOGY 14(Suppl 9):68-71, 2000]

Introduction

Fluorinated pyrimidines are agents that have been widely used to treat a variety of cancers. Their continually expanding role in cancer chemotherapy is related to the introduction of new treatment regimens and combinations with other agents, and to the development of oral formulations suitable for prolonged administration. UFT, an anticancer agent composed of tegafur and uracil in a molar ratio of 1:4, is a second-generation, fluorinated pyrimidine-based drug that is widely used in Japan and is now undergoing intensive clinical evaluation in the United States.[1] Oral administration of UFT produces fluorouracil (5-FU) plasma levels similar to those observed in cancer patients after continuous intravenous infusion.

Early clinical reports indicate that UFT inhibits the growth not only of primary tumor but also metastatic sites.[2-4] Several studies[5,6] have demonstrated that UFT prevents or inhibits metastasis in tumor-bearing animals and is closely associated with increased survival. However, the mechanism of inhibition remains unknown. Our recent studies aimed to clarify the antimetastatic effect of UFT and elucidate a possible mechanism involved in this phenomenon.

In the process of cancer metastasis, one of the crucial steps is angiogenesis, the process of delivery of essential energetic factors and oxygen to a newly growing tumor mass.[7-9] The inhibition of the formation of microvessels entering or developing in a tumor affects the expansion of micrometastases and may lead to disappearance of the tumor and, consequently, increased survival. Tumor-cell–driven angiogenesis is controlled by vascular endothelial growth factor (VEGF), fibroblast growth factor-2, interleukin-8, and several other growth factors produced by tumor mass.[10-12] It seems reasonable, therefore, to consider their role in the antimetastatic and antiangiogenic activity of a drug, specifically UFT.

In this study, we attempted to (1) demonstrate an inhibitory effect of UFT on spontaneously forming metastasis and its role in increased survival, (2) find a correlation between antitumor (antimetastatic) effect and inhibition of an expanding tumor microvasculature, and (3) identify growth factors affected by UFT and related compounds in angiogenesis.

Materials and Methods

Spontaneous Metastasis to the Lung in Mice

The murine renal cancer cell line (RENCA) was kindly provided by Dr. I. J. Fidler, University of Texas M. D. Anderson Cancer Center, Houston, Texas. On day 0, RENCA cells 2 ´ 104 were implanted into the left kidney of BALB/cA mice. Ten days later, the primary tumor growing in the kidney was surgically removed. The anticancer effect was evaluated based on prolonged survival of tumor-bearing animals, which were dying of intensive metastasis to the lungs. The survival effect of drug-treated animals was evaluated as the ratio of the mean survival time of treated animals to that of control animals. The density of microvessels in the lung metastatic foci was determined by immunostaining with an anti–CD-31 monoclonal antibody.

Dorsal Air Sac Assay in Mice

This experiment was performed exactly as described previously.[13] Briefly, the Millipore chambers containing either tumor cells or recombinant human VEGF (rhVEGF) were implanted into the preformed air sac in the dorsum of a male BALB/cA mouse.

Five days after implantation, the chambers were removed from subcutaneous fascia and the angiogenic response was assessed with dissecting microscope photographs to determine the number of newly formed blood vessels. The extent of angiogenesis was scored as an index of 0, 1, 2, 3, 4, and 5 for the numbers of newly formed blood vessels showing zigzagging characteristics in the area attached to the chamber of 0, 1, 2, 3, 4, and 5 or more.

Results

Life-Prolonging Effects of UFT in Lung Metastasis Model

This study examined the life-prolonging effects of several anticancer drugs, including UFT, 5-FU, and TNP-470, in the lung spontaneous metastasis model of murine RENCA cells. In this metastasis model, there was a 100% incidence of spontaneous metastasis to the lung.

The average survival time for the control animals was 41.3 ± 2.9days (mean ± SEM). The UFT-treated (20 mg/kg/day) animal group showed a significant life-prolonging effect as manifested by a corresponding treated to control response ratio (T/C) value of 160.8% (P < .05). The group of animals treated with 5-FU (13 mg/kg/day) also experienced the life-prolonging effect, although 5-FU was less potent (T/C = 125.7%, P < .01). Conversely, TNP-470, a known antiangiogenic agent, showed only a marginal effect on the survival of treated animals (Figure 1).

In a separate experiment, the antimetastatic effects of test compounds were evaluated 34 days after implantation of cancer cells by determining the total weight of cancer-invaded lungs. The average weight of normal lungs of the age-matched animals was 0.13 g, while cancer-invaded lungs weighed 0.45 g, indicating the presence of intensive metastases. The weights of invaded lungs were significantly reduced with UFT, TNP-470, and, to lesser extent, 5-FU, as demonstrated by corresponding TC values of 44.5%, 51.3%, and 64.9%, respectively (data not shown).

The tumor mass reduction in the lungs of treated animals was associated with a decrease in the number of blood vessels in metastatic nodules, as determined by an immunochemical staining with an anti–CD-31 monoclonal antibody. The number of blood vessels in the cancer nodules was reduced by 35.5%, 20.6%, and 61.5% following treatment with UFT, 5-FU, and TNP-470, respectively.

Antiangiogenic Activity of UFT in DAS Assay

The decreased blood vessel density in lung metastatic foci of drug-treated animals indicated a possible inhibition of cancer-induced angiogenesis. Therefore, we examined whether UFT treatment directly affected the angiogenesis, or was an indirect effect resulting from tumor shrinkage. The evaluation of antiangiogenic activity was performed in a dorsal air sac (DAS) assay, in which the process of angiogenesis was induced by RENCA cells in suspension, embedded between semi- permeable membranes. UFT showed a marked inhibition of RENCA cell-induced angiogenesis, exceeding that observed after treatment with 5-FU.

UFT is composed of uracil and tegafur; the latter is further metabolized in vivo to 5-FU and g-hydroxybutyric acid (GHB) (Figure 2).[14,15] Therefore, we looked for an active chemical entity originating from UFT that might be responsible for antiangiogenic activity. We examined the effects of uracil and tegafur as well as the metabolites of tegafur: 5-FU, GHB, and g-butyrolactone (GBL) in a DAS assay.

The angiogenic response induced by RENCA cells was abrogated both by 5-FU and tegafur, while uracil remained completely inactive. Surprisingly, GHB and GBL, which are biotransformation products of tegafur, showed pronounced inhibition of angiogenesis (Figure 3).

To examine whether the antiangiogenic effect of UFT is limited to a particular cell line or is universal, further studies were performed using human cancer cell lines such as gastric, lung, and colon cancers. This experiment revealed a wide spectrum of antiangiogenic activity with UFT: five of five tested cell lines, including RENCA cells, responded to the antiangiogenic activity of UFT and 5-FU.

Effects on VEGF-Dependent Responses in HUVEC

Several cancer cell lines in vitro and in vivo reportedly produce VEGF and fibroblast growth factor-2 (FGF-2), known angiogenesis-promoting factors. In our experiments, we found VEGF to be predominantly produced and secreted by cancer cells, while FGF-2 was present in minimal quantities. We suspected, therefore, that the antiangiogenic activity of UFT might be related to the suppression of VEGF-dependent response of vascular endothelial cells by 5-FU or GHB.

The experimental results on the proliferation of VEGF-stimulated human umbilical vein endothelial cells (HUVECs) revealed concentration-dependent inhibition of HUVEC cell proliferation by 5-FU, while no inhibition was observed in the case of GHB. On the other hand, 5-FU and GHB abrogated chemotactic migration and tube formation of HUVECs stimulated with VEGF (data not shown). These results indicate that UFT suppresses angiogenesis, partly by an antiproliferative effect of 5-FU, a cytotoxic metabolite, and predominantly by the inhibition of the VEGF-dependent responses of vascular endothelial cells mediated by GHB, a completely noncytotoxic metabolite of UFT.

These effects, observed in vitro, were reproduced in the experiment performed in vivo in a DAS assay, when the angiogenesis was induced by rhVEGF (Table 1). The UFT treatment resulted in 94.2% inhibition of VEGF-induced angiogenesis, while the treatment with an equimolar dose of GHB was associated with a complete lack of any angiogenic response. This effect was also seen with 5-FU but was less pronounced.

Conclusions

This study attempted to confirm previously reported cases of the antimetastatic activity of UFT and to demonstrate its implication to the prolongation of the life span of tumor-bearing animals. A significant increase in survival time demonstrates that UFT is a potent drug in the model of murine cancer that spontaneously metastasized to the lungs. Moreover, the metastasis-reducing potential of UFT is accompanied by a decreased number of microvessels in lung metastatic nodules. Also, the inhibition of cancer-induced angiogenesis appears to be closely associated with UFT (shown by a DAS assay allowing us to trace the formation of new blood vessels). It is of great interest that the antiangiogenic effect of UFT is related to tegafur, and especially to its metabolites 5-FU, GBL, and GHB, the latter being noncytotoxic.

The angiogenesis inhibitory effect of UFT is not limited to murine cancer. It was also observed in various human cancer cell lines. In vitro experiments revealed the ability of UFT-derived compounds to inhibit VEGF-mediated vascular endothelial cell proliferation and their chemotactic migration and tube formation. However, inhibition of cell proliferation was only observed with 5-FU, a cytotoxic metabolite of UFT. These data indicate that UFT has an antiangiogenic potential due to its ability to disrupt a VEGF-mediated process controlling the proliferation of vascular endothelial cells.

References:

1. Pazdur R: Beyond 5-fluorouracil. Oncology 13 (suppl):15-16, 1999.

2. Taguchi H, Takaoka K, Matsuda M: A case of renal cell carcinoma with lung metastasis and local recurrence effectively treated with nephrectomy and UFT. Gan To Kagaku Ryoho 19:2395-2398, 1992.

3. Fukuoka H, Takeda M, Nomura S, et al: Complete remission of lung metastases of bladder tumor treated by small dosage of UFT: A case report. Hinyokika Kiyo 37:541-544, 1991.

4. Pazdur R, Lassere Y, Rhodes V, et al: Phase II trial of uracil and tegafur plus oral leucovorin: An effective oral regimen in the treatment of metastatic colorectal carcinoma. J Clin Oncol 12:2296-2300, 1994.

5. Kurebayashi J, Sonoo H: Antiproliferative and antimetastatic effects of UFT on MKL-4 human breast cancer cells transplanted into nude mice. Gan To Kagaku Ryoho 22:665-670, 1995.

6. Matsushita K, Kuramitsu Y, Ohiro Y, et al: Combination therapy of active hexose correlated compound plus UFT significantly reduces the metastasis of rat mammary adenocarcinoma. Anticancer Drugs 9:343-50, 1998.

7. Ausprunk DH, Folkman J: Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14:53-65, 1977.

8. Weinstat-Saslow D, Steeg PS: Angiogenesis and colonization in the tumor metastatic process: basic and applied advances. FASEB J 8:401-407, 1994.

9. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27-31, 1995.

10. Kumar R, Yoneda J, Bucana CD, et al: Regulation of distinct steps of angiogenesis by different angiogenic molecules. Int J Oncol 12:749-757, 1998.

11. Cronauer MV, Hittmair A, Eder IE, et al: Basic fibroblast growth factor levels in cancer cells and in sera of patients suffering from proliferative disorders of the prostate. Prostate 31:223-233, 1997.

12. Shibusa T, Shijubo N, Abe S: Tumor angiogenesis and vascular endothelial growth factor expression in stage I lung adenocarcinoma. Clin Cancer Res 4:1483-1487, 1998.

13. Yonekura K, Basaki Y, Chikahisa L, et al: UFT and its metabolites inhibit the angiogenesis induced by murine renal cell carcinoma, as determined by a dorsal air sac assay in mice. Clin Cancer Res 5:2185-2191, 1999.

14. Wu AT, Au JL, Sadee W: Hydroxylated metabolites of R,S-1-(tetrahydro-2-furanyl)-5-fluorouracil in rats and rabbits. Cancer Res 38:210-214, 1978.

15. Au JL, Sadee W: Activation of Ftorafur [R,S-1-(tetrahydro-2-furanyl)-5-fluorouracil] to 5-fluorouracil and gamma-butyrolactone. Cancer Res 40: 2814-2819, 1980.

Articles in this issue

Computer Technology Helps Radiologists Spot Overlooked Small Breast Cancers
New Awards Spotlight Courage of Cancer Survivors
Using the Body&#146;s Anticancer Defenses to Guide and Improve Breast Cancer Treatment
Vaccine Studies Demonstrate Promise of Immunotherapy to Treat Breast Cancer and Prevent Recurrence
Children&#146;s Art Project at M. D. Anderson Cancer Center
Settling on an Increased NCI Budget
Computer Billing Standard
Ligand Receives FDA Marketing Clearance for Bexarotene Gel
Mayo Clinic Study Shows Patients Uncertain About Cancer Risk Terms
Multidisciplinary Management of Pediatric Soft-Tissue Sarcoma
Follow-up Care for Cancer: Making the Benefits Equal the Cost
Commentary (Stenson): Indications for Selective Neck Dissection: When, How, and Why
Follow-up Care for Cancer: Making the Benefits Equal the Cost
Costs of Smoking Among Active-Duty US Air Force Personnel&#151;United States, 1997
Multidisciplinary Management of Pediatric Soft-Tissue Sarcoma
Related Videos
Experts on CML
Experts on MM
Experts on CML
Experts on MM
KOLs smiling at camera.
KOLs smiling at camera.
Related Content

AVB-001 Receives FDA FTD in Platinum-Resistant Ovarian Cancer

October 3rd 2023

Pipeline Perspectives: Fruquintinib in Metastatic Colorectal Cancer

October 2nd 2023

FDA Approves Pegcetacoplan Injector for Paroxysmal Nocturnal Hemoglobinuria

October 3rd 2023

Navigating the Impact of Chemotherapy Shortages on Cancer Care and Finances

September 18th 2023

Alisertib Earns FDA Orphan Drug Designation for Small Cell Lung Cancer

October 2nd 2023

Hypofractionated Vs Standard RT Yields Similar Toxicity in Breast Cancer

October 2nd 2023

AVB-001 Receives FDA FTD in Platinum-Resistant Ovarian Cancer

October 3rd 2023

Pipeline Perspectives: Fruquintinib in Metastatic Colorectal Cancer

October 2nd 2023

FDA Approves Pegcetacoplan Injector for Paroxysmal Nocturnal Hemoglobinuria

October 3rd 2023

Navigating the Impact of Chemotherapy Shortages on Cancer Care and Finances

September 18th 2023

Alisertib Earns FDA Orphan Drug Designation for Small Cell Lung Cancer

October 2nd 2023

Hypofractionated Vs Standard RT Yields Similar Toxicity in Breast Cancer

October 2nd 2023

AVB-001 Receives FDA FTD in Platinum-Resistant Ovarian Cancer

October 3rd 2023

Pipeline Perspectives: Fruquintinib in Metastatic Colorectal Cancer

October 2nd 2023

FDA Approves Pegcetacoplan Injector for Paroxysmal Nocturnal Hemoglobinuria

October 3rd 2023

Navigating the Impact of Chemotherapy Shortages on Cancer Care and Finances

September 18th 2023

Alisertib Earns FDA Orphan Drug Designation for Small Cell Lung Cancer

October 2nd 2023

Hypofractionated Vs Standard RT Yields Similar Toxicity in Breast Cancer

October 2nd 2023
Related Content
Advertisement

Investigators are assessing AVB-001 as a treatment for those with high-grade serous adenocarcinoma of the ovary, primary peritoneum, or fallopian tube in a phase 1/2 trial.

AVB-001 Receives FDA FTD in Platinum-Resistant Ovarian Cancer

October 3rd 2023
Article

Investigators are assessing AVB-001 as a treatment for those with high-grade serous adenocarcinoma of the ovary, primary peritoneum, or fallopian tube in a phase 1/2 trial.


Arvind N. Dasari, MD, and Cathy Eng, MD, discuss clinical trial data that may support the FDA approval of fruquintinib in metastatic colorectal cancer, and how it may impact the standard of care.

Pipeline Perspectives: Fruquintinib in Metastatic Colorectal Cancer

October 2nd 2023
Podcast

Arvind N. Dasari, MD, and Cathy Eng, MD, discuss clinical trial data that may support the FDA approval of fruquintinib in metastatic colorectal cancer, and how it may impact the standard of care.


Patients with paroxysmal nocturnal hemoglobinuria can now self-administer pegcetacoplan subcutaneously following the FDA’s approval of an injector.

FDA Approves Pegcetacoplan Injector for Paroxysmal Nocturnal Hemoglobinuria

October 3rd 2023
Article

Patients with paroxysmal nocturnal hemoglobinuria can now self-administer pegcetacoplan subcutaneously following the FDA’s approval of an injector.


Pharmaceutical, gynecologic oncology, and physician perspectives shed light on potentially mitigating the ongoing carboplatin and cisplatin shortages’ effects on cancer care in the United States.

Navigating the Impact of Chemotherapy Shortages on Cancer Care and Finances

September 18th 2023
Podcast

Pharmaceutical, gynecologic oncology, and physician perspectives shed light on potentially mitigating the ongoing carboplatin and cisplatin shortages’ effects on cancer care in the United States.


Alisertib will be assessed in patients with small cell lung cancer as part of the phase 2 Study PUMA-ALI-4201.

Alisertib Earns FDA Orphan Drug Designation for Small Cell Lung Cancer

October 2nd 2023
Article

Alisertib will be assessed in patients with small cell lung cancer as part of the phase 2 Study PUMA-ALI-4201.


Data from the FABREC trial support the use of hypofractionated postmastectomy radiotherapy in patients with breast cancer following implant-based reconstruction.

Hypofractionated Vs Standard RT Yields Similar Toxicity in Breast Cancer

October 2nd 2023
Article

Data from the FABREC trial support the use of hypofractionated postmastectomy radiotherapy in patients with breast cancer following implant-based reconstruction.

About
Advertise
CureToday.com
OncLive.com
OncNursingNews.com
TargetedOnc.com
Contact
Terms and Conditions
Privacy
Do Not Sell My Personal Information
Contact Info

2 Clarke Drive
Cranbury, NJ 08512

609-716-7777

© 2023 MJH Life Sciences

All rights reserved.