scout

Prostate Cancer

Latest News


CME Content


The patient is a 74-year-old male in generally good health. He reported having several episodes of prostatitis over the past 5–10 years. His prostate-specific antigen (PSA) levels rose to 5 ng/mL from an initial value of 2.6 ng/mL. Biopsies at this time were positive for malignancy in both lobes, clinical stage T2. His Gleason score was 6, suggesting that he had a favorable prognosis with a low risk of recurrence.

Most older men with early-stage prostate cancer will not require treatment or will die of other causes before their cancer progresses significantly, according to a retrospective study of 9,018 men from the SEER database. The men had been diagnosed with stage I-II disease between 1992 and 2002 and did not receive local therapy initially or hormonal therapy within 6 months of diagnosis.

Toremifene citrate (Acapodene) 80 mg reduced the occurrence of vertebral fractures and met other key endpoints in a phase III trial of 1,389 men receiving androgen deprivation therapy for advanced prostate cancer, GTx, Inc. said in a press release. Based on these findings, the company plans to file a New Drug Application with FDA by the summer of this year for the treatment of multiple side effects of ADT.

Researchers have reported finding a blood biomarker that enables close to 98% accuracy in predicting the spread of prostate cancer to regional lymph nodes. Their study is published in the March 1 issue of Clinical Cancer Research, a journal of the American Association for Cancer Research. The new blood test measures levels of endoglin, a plasma biomarker that has been previously shown to predict the spread of colon and breast cancer.

In the November 30, 2007, issue of ­ONCOLOGY, Dr. Tony S. Quang and colleagues have raised some very important and relevant issues regarding the costs and benefits of new technology in the treatment of prostate cancer ("Technologic Evolution in the Treatment of Prostate Cancer: Clinical, Financial, and Legal Implications for Managed Care Organizations," ONCOLOGY 21[13]:1598-1604, 2007).

Providing radiation therapy for prostate cancer patients who have rising PSA levels after radical prostatectomy reduced the risk of dying from prostate cancer by more than 60% at 10 years, according to a retrospective study of patients treated at Johns Hopkins.

The use of high-intensity focused ultrasound (HIFU) as a method for ablation of a localized tumor growth is not new. Several attempts have been made to apply the principles of HIFU to the treatment of pelvic, brain, and gastrointestinal tumors. However, only in the past decade has our understanding of the basic principles of HIFU allowed us to further exploit its application as a radical and truly noninvasive, intent-to-treat, ablative method for treating organ-confined prostate cancer. Prostate cancer remains an elusive disease, with many questions surrounding its natural history and the selection of appropriate patients for treatment yet to be answered. HIFU may play a crucial role in our search for an efficacious and safe primary treatment for localized prostate cancer. Its noninvasive and unlimited repeatability potential is appealing and unique; however, long-term results from controlled studies are needed before we embrace this new technology. Furthermore, a better understanding of HIFU's clinical limitations is vital before this treatment modality can be recommended to patients who are not involved in well-designed clinical studies. This review summarizes current knowledge about the basic principles of HIFU and its reported efficacy and morbidity in clinical series published since 2000.

The use of high-intensity focused ultrasound (HIFU) as a method for ablation of a localized tumor growth is not new. Several attempts have been made to apply the principles of HIFU to the treatment of pelvic, brain, and gastrointestinal tumors. However, only in the past decade has our understanding of the basic principles of HIFU allowed us to further exploit its application as a radical and truly noninvasive, intent-to-treat, ablative method for treating organ-confined prostate cancer. Prostate cancer remains an elusive disease, with many questions surrounding its natural history and the selection of appropriate patients for treatment yet to be answered. HIFU may play a crucial role in our search for an efficacious and safe primary treatment for localized prostate cancer. Its noninvasive and unlimited repeatability potential is appealing and unique; however, long-term results from controlled studies are needed before we embrace this new technology. Furthermore, a better understanding of HIFU's clinical limitations is vital before this treatment modality can be recommended to patients who are not involved in well-designed clinical studies. This review summarizes current knowledge about the basic principles of HIFU and its reported efficacy and morbidity in clinical series published since 2000.

The use of high-intensity focused ultrasound (HIFU) as a method for ablation of a localized tumor growth is not new. Several attempts have been made to apply the principles of HIFU to the treatment of pelvic, brain, and gastrointestinal tumors. However, only in the past decade has our understanding of the basic principles of HIFU allowed us to further exploit its application as a radical and truly noninvasive, intent-to-treat, ablative method for treating organ-confined prostate cancer. Prostate cancer remains an elusive disease, with many questions surrounding its natural history and the selection of appropriate patients for treatment yet to be answered. HIFU may play a crucial role in our search for an efficacious and safe primary treatment for localized prostate cancer. Its noninvasive and unlimited repeatability potential is appealing and unique; however, long-term results from controlled studies are needed before we embrace this new technology. Furthermore, a better understanding of HIFU's clinical limitations is vital before this treatment modality can be recommended to patients who are not involved in well-designed clinical studies. This review summarizes current knowledge about the basic principles of HIFU and its reported efficacy and morbidity in clinical series published since 2000.

The use of high-intensity focused ultrasound (HIFU) as a method for ablation of a localized tumor growth is not new. Several attempts have been made to apply the principles of HIFU to the treatment of pelvic, brain, and gastrointestinal tumors. However, only in the past decade has our understanding of the basic principles of HIFU allowed us to further exploit its application as a radical and truly noninvasive, intent-to-treat, ablative method for treating organ-confined prostate cancer. Prostate cancer remains an elusive disease, with many questions surrounding its natural history and the selection of appropriate patients for treatment yet to be answered. HIFU may play a crucial role in our search for an efficacious and safe primary treatment for localized prostate cancer. Its noninvasive and unlimited repeatability potential is appealing and unique; however, long-term results from controlled studies are needed before we embrace this new technology. Furthermore, a better understanding of HIFU's clinical limitations is vital before this treatment modality can be recommended to patients who are not involved in well-designed clinical studies. This review summarizes current knowledge about the basic principles of HIFU and its reported efficacy and morbidity in clinical series published since 2000.

The use of high-intensity focused ultrasound (HIFU) as a method for ablation of a localized tumor growth is not new. Several attempts have been made to apply the principles of HIFU to the treatment of pelvic, brain, and gastrointestinal tumors. However, only in the past decade has our understanding of the basic principles of HIFU allowed us to further exploit its application as a radical and truly noninvasive, intent-to-treat, ablative method for treating organ-confined prostate cancer. Prostate cancer remains an elusive disease, with many questions surrounding its natural history and the selection of appropriate patients for treatment yet to be answered. HIFU may play a crucial role in our search for an efficacious and safe primary treatment for localized prostate cancer. Its noninvasive and unlimited repeatability potential is appealing and unique; however, long-term results from controlled studies are needed before we embrace this new technology. Furthermore, a better understanding of HIFU's clinical limitations is vital before this treatment modality can be recommended to patients who are not involved in well-designed clinical studies. This review summarizes current knowledge about the basic principles of HIFU and its reported efficacy and morbidity in clinical series published since 2000.

Presentations at the AACR's Frontiers in Cancer Prevention conference, showed both the promise and pitfalls of attempts to move complementary approaches from the fringes to the front of cancer care (see also pages 18 and 20). One of the dangers when looking at early complementary research is the risk of overinterpreting preliminary results

Charles Sawyers, MD, head of the new Human Oncology and Pathogenesis Program at Memorial Sloan-Kettering Cancer Center, is perhaps best known for his kinase inhibitor research leading to the development of imatinib (Gleevec) and dasatinib (Sprycel), drugs of unprecedented benefit for patients with chronic myelogenous leukemia.

past decade has witnessed a host of technologic improvements in prostate cancer therapy. The three major modalities offered in most managed care plans include radical prostatectomy, external-beam radiation therapy (EBRT), and interstitial brachytherapy (seed implant). Continued technologic advancement has led to incremental improvements in the safety and effectiveness of each modality. However, these improvements have led to a significant increase in the cost of treatment.

The randomized, double-blind satraplatin phase III registration trial (SPARC) has failed to meet its primary endpoint of overall survival in patients with hormone-refractory prostate cancer, Pharmion Corporation and GPC Biotech AG said in a news release.

Rising prostate-specific antigen (PSA) in nonmetastatic prostate cancer occurs in two main clinical settings: (1) rising PSA to signal failed initial local therapy and (2) rising PSA in the setting of early hormone-refractory prostate cancer prior to documented clinical metastases. Most urologists and radiation oncologists are very familiar with the initial very common clinical scenario, commonly called "biochemical recurrence." In fact, up to 70,000 men each year will have a PSA-only recurrence after failed definitive therapy. The ideal salvage therapy for these men is not clear and includes salvage local therapies and systemic approaches, of which the mainstay is hormonal therapy. Treatment needs to be individualized based upon the patient's risk of progression and the likelihood of success and the risks involved with the therapy. It is unknown how many men per year progress with rising PSA while on hormonal therapy without documented metastases. This rising PSA disease state is sometimes called, "PSA-only hormone-refractory prostate cancer." As in the setting of initial biochemical recurrence, evidence-based treatment options are limited, and taking a risk-stratified approach is justified. In this article, we will explore these prostate cancer disease states with an emphasis on practical, clinically applicable approaches.

Rising prostate-specific antigen (PSA) in nonmetastatic prostate cancer occurs in two main clinical settings: (1) rising PSA to signal failed initial local therapy and (2) rising PSA in the setting of early hormone-refractory prostate cancer prior to documented clinical metastases. Most urologists and radiation oncologists are very familiar with the initial very common clinical scenario, commonly called "biochemical recurrence." In fact, up to 70,000 men each year will have a PSA-only recurrence after failed definitive therapy. The ideal salvage therapy for these men is not clear and includes salvage local therapies and systemic approaches, of which the mainstay is hormonal therapy. Treatment needs to be individualized based upon the patient's risk of progression and the likelihood of success and the risks involved with the therapy. It is unknown how many men per year progress with rising PSA while on hormonal therapy without documented metastases. This rising PSA disease state is sometimes called, "PSA-only hormone-refractory prostate cancer." As in the setting of initial biochemical recurrence, evidence-based treatment options are limited, and taking a risk-stratified approach is justified. In this article, we will explore these prostate cancer disease states with an emphasis on practical, clinically applicable approaches.