Author | Teresa Moran, MD

Articles

The Promise of Pharmacogenomics: Gemcitabine and Pemetrexed

November 02, 2004

Although no overall differences in survival have been observed betweenthe many chemotherapy combinations in non–small-cell lungcancer, the clinical application of mRNA expression levels of amplifiedgenes may disclose many genetic influences on cytotoxic drug sensitivityand enable clinicians to tailor chemotherapy according to eachindividual’s gene profile. Specifically, the assessment of ribonucleotidereductase subunit M1 and thymidylate synthase mRNA expression levelsmight select patients who benefit from gemcitabine (Gemzar) orpemetrexed (Alimta) combinations. Until recently, clinical prognosticfactors such as performance status, weight loss, and lactate dehydrogenasewere the only parameters used to predict chemotherapy responseand survival. However, accumulated data indicate that overexpressionof genes involved in cancer glycolysis pathways plays an important role,and might be an independent mechanism of chemoresistance. Thedysregulation of glycolytic genes is affected by growth signals involvingthe PI3K/Akt pathway and downstream genes such as hypoxiainduciblefactor-1-alpha. One can thus envision that substantial improvementsin therapeutic outcome could benefit from the integrationof tailored ribonucleotide reductase-dependent chemotherapy, ribonucleotidereductase antisense therapy, and targeted therapy.