ONCOLOGY Vol 21 No 7

home / journals / oncology / oncology-vol-21-no-7

Site Logo

Costs of Treating Elderly Patients With Cancer: What Are We Measuring in the Absence of Reliable Evidence?

June 1st 2007
Article

Patients aged 65 years and older represent 12% of the US population yet account for approximately 56% of cancer cases and 69% of all cancer mortalities. The overall cost of cancer in 2005 was $209.9 billion—$74 billion for direct medical costs and $118.4 billion for indirect mortality costs. This paper considers the direct, indirect, and out-of-pocket expenditures incurred by cancer patients ‚â • 50 years of age. Several major empirical studies on supportive care for older patients and cancer-related costs were reviewed. Insurance coverage, hematologic malignancies, squamous cell carcinoma of the head and neck, and cancers of the breast, prostate, colorectum, and lung were evaluated. Major sources of direct medical expenditures covered by third-party insurers for patients aged 65 years and older include extended length of hospital stay, home health assistance following hospital discharge, adjuvant prescription medications, lower-risk treatment (for prostate cancer), and advent of new pharmaceuticals (for colorectal cancer). The mean total direct medical cost for breast cancer is $35,164, and the cumulative cost for prostate cancer is $42,570. Emerging targeted cancer drug costs range from $20,000 to $50,000 annually per patient. Additional clinical trials and cost-effective treatments are needed for older patients to ameliorate the disproportionate economic burden among older individuals with cancer. Additional research about cancer costs may also lead to reforms in cancer care reimbursement, and therefore provide access to affordable health care for older patients.


Site Logo

The Moving Target of Cancer Care Costs

June 1st 2007
Article

Patients aged 65 years and older represent 12% of the US population yet account for approximately 56% of cancer cases and 69% of all cancer mortalities. The overall cost of cancer in 2005 was $209.9 billion—$74 billion for direct medical costs and $118.4 billion for indirect mortality costs. This paper considers the direct, indirect, and out-of-pocket expenditures incurred by cancer patients ‚â • 50 years of age. Several major empirical studies on supportive care for older patients and cancer-related costs were reviewed. Insurance coverage, hematologic malignancies, squamous cell carcinoma of the head and neck, and cancers of the breast, prostate, colorectum, and lung were evaluated. Major sources of direct medical expenditures covered by third-party insurers for patients aged 65 years and older include extended length of hospital stay, home health assistance following hospital discharge, adjuvant prescription medications, lower-risk treatment (for prostate cancer), and advent of new pharmaceuticals (for colorectal cancer). The mean total direct medical cost for breast cancer is $35,164, and the cumulative cost for prostate cancer is $42,570. Emerging targeted cancer drug costs range from $20,000 to $50,000 annually per patient. Additional clinical trials and cost-effective treatments are needed for older patients to ameliorate the disproportionate economic burden among older individuals with cancer. Additional research about cancer costs may also lead to reforms in cancer care reimbursement, and therefore provide access to affordable health care for older patients.


Site Logo

The Potential Utility of Studying Metastatic Disease

June 1st 2007
Article

Patients with cancer are usually staged based on the presence of detectable regional and/or distant disease. However, staging is inexact and cM0 patients may have microscopic metastases (cM0pM1) that later cause relapse and death. Since the clinical tools used to stage patients are fairly similar for different tumors, the ratio of the rates of metachronous to synchronous metastases should be similar for different tumors (hypothesis #1). Improvements in diagnostic tools should have caused the ratio of metachronous-to-synchronous metastases to have decreased over time (hypothesis #2). Finally, the fraction of patients with either metachronous or synchronous metastases should have declined over time due to increased screening and earlier diagnoses (hypothesis #3). To test these hypotheses, Surveillance, Epidemiology, and End Results (SEER) data from 1973-1998 were analyzed for 19 solid tumors. A linear relationship was seen between the rates of metachronous and synchronous metastases, with modestly strong correlation coefficients, consistent with hypothesis #1. Over time, changes in staging methods have not significantly altered the ratio of metachronous/synchronous metastases, contrary to hypothesis #2. Also over time, a decrease in the number of patients with metastases was found, consistent with hypothesis #3. Therefore, the rate of anticipated metachronous metastases can be estimated from the rate of clinically evident metastases at presentation. Changes in screening/staging of disease over time may have reduced the overall fraction of patients with metastases.



Site Logo

Association Between the Rates of Synchronous and Metachronous Metastases: Analysis of SEER Data

June 1st 2007
Article

Patients with cancer are usually staged based on the presence of detectable regional and/or distant disease. However, staging is inexact and cM0 patients may have microscopic metastases (cM0pM1) that later cause relapse and death. Since the clinical tools used to stage patients are fairly similar for different tumors, the ratio of the rates of metachronous to synchronous metastases should be similar for different tumors (hypothesis #1). Improvements in diagnostic tools should have caused the ratio of metachronous-to-synchronous metastases to have decreased over time (hypothesis #2). Finally, the fraction of patients with either metachronous or synchronous metastases should have declined over time due to increased screening and earlier diagnoses (hypothesis #3). To test these hypotheses, Surveillance, Epidemiology, and End Results (SEER) data from 1973-1998 were analyzed for 19 solid tumors. A linear relationship was seen between the rates of metachronous and synchronous metastases, with modestly strong correlation coefficients, consistent with hypothesis #1. Over time, changes in staging methods have not significantly altered the ratio of metachronous/synchronous metastases, contrary to hypothesis #2. Also over time, a decrease in the number of patients with metastases was found, consistent with hypothesis #3. Therefore, the rate of anticipated metachronous metastases can be estimated from the rate of clinically evident metastases at presentation. Changes in screening/staging of disease over time may have reduced the overall fraction of patients with metastases.