Latest News

An ongoing, open-label phase 1 study evaluating VT3989 in mesothelioma revealed positive early efficacy and encouraging safety with the agent.
VT3989 Receives Orphan Drug Designation for the Treatment of Mesothelioma

August 1st 2025

An ongoing, open-label phase 1 study evaluating VT3989 in mesothelioma revealed positive early efficacy and encouraging safety with the agent.

Explore innovative strategies and emerging therapies transforming small cell lung cancer treatment, enhancing patient outcomes and survival rates.
3 Things You Should Know About Evolving Strategies in SCLC: Limited-Stage Advances, Frontline Innovation, and Postplatinum Progress

July 29th 2025

A proactive regimen reduces dermatologic AEs in patients with NSCLC who were treated with amivantamab and lazertinib, enhancing treatment adherence.
COCOON Regimen Shows Promise in Mitigating Dermatologic AEs During NSCLC Treatment

July 27th 2025

The MARIPOSA trial revealed promising survival benefits with amivantamab plus lazertinib vs osimertinib for patients with EGFR-mutant lung cancer.
MARIPOSA OS Results Are Significant for EGFR+ NSCLC

July 2nd 2025

A total of 35% of patients with fully resected metastatic lung osteosarcoma treated with OST-HER2 achieved a 1-year event-free survival.
OST-HER2 Shows Significant EFS Improvement in Metastatic Lung Osteosarcoma

July 1st 2025

Latest CME Events & Activities

More News


Site Logo

State of the Art in Lung Cancer: A Glass One-Quarter Full?

February 1st 2007

Surgery remains the initial treatment for patients with early-stage non-small-cell lung cancer (NSCLC). Additional therapy is necessary because of high rates of distant and local disease recurrence after surgical resection. Early trials of adjuvant chemotherapy and postoperative radiation were often plagued by small patient sample size, inadequate surgical staging, and ineffective or antiquated treatment. A 1995 meta-analysis found a nonsignificant reduction in risk of death for postoperative cisplatin-based chemotherapy. Since then, a new generation of randomized phase III trials have been conducted, some of which have reported a benefit for chemotherapy in the adjuvant setting. The role of postoperative radiation therapy remains to be defined. It may not be beneficial in early-stage NSCLC but still may have utility in stage IIIA disease. Improvement in survival outcomes from adjuvant treatment are likely to result from the evaluation of novel agents, identification of tumor markers predictive of disease relapse, and definition of factors that determine sensitivity to therapeutic agents. Some of the molecularly targeted agents such as the angiogenesis and epidermal growth factor receptor inhibitors are being incorporated into clinical trials. Preliminary results with gene-expression profiles and lung cancer proteomics have been promising. These techniques may be used to create prediction models to identify patients at risk for disease relapse. Molecular markers such as ERCC1 may determine response to treatment. All of these innovations will hopefully increase cure rates for lung cancer patients by maximizing the efficacy of adjuvant therapy.


Site Logo

Non-Small-Cell Lung Cancer Adjuvant Therapy: Translating Data Into Reality

February 1st 2007

Surgery remains the initial treatment for patients with early-stage non-small-cell lung cancer (NSCLC). Additional therapy is necessary because of high rates of distant and local disease recurrence after surgical resection. Early trials of adjuvant chemotherapy and postoperative radiation were often plagued by small patient sample size, inadequate surgical staging, and ineffective or antiquated treatment. A 1995 meta-analysis found a nonsignificant reduction in risk of death for postoperative cisplatin-based chemotherapy. Since then, a new generation of randomized phase III trials have been conducted, some of which have reported a benefit for chemotherapy in the adjuvant setting. The role of postoperative radiation therapy remains to be defined. It may not be beneficial in early-stage NSCLC but still may have utility in stage IIIA disease. Improvement in survival outcomes from adjuvant treatment are likely to result from the evaluation of novel agents, identification of tumor markers predictive of disease relapse, and definition of factors that determine sensitivity to therapeutic agents. Some of the molecularly targeted agents such as the angiogenesis and epidermal growth factor receptor inhibitors are being incorporated into clinical trials. Preliminary results with gene-expression profiles and lung cancer proteomics have been promising. These techniques may be used to create prediction models to identify patients at risk for disease relapse. Molecular markers such as ERCC1 may determine response to treatment. All of these innovations will hopefully increase cure rates for lung cancer patients by maximizing the efficacy of adjuvant therapy.


Site Logo

Adjuvant Treatment of Non-Small-Cell Lung Cancer: How Do We Improve the Cure Rates Further?

February 1st 2007

Surgery remains the initial treatment for patients with early-stage non-small-cell lung cancer (NSCLC). Additional therapy is necessary because of high rates of distant and local disease recurrence after surgical resection. Early trials of adjuvant chemotherapy and postoperative radiation were often plagued by small patient sample size, inadequate surgical staging, and ineffective or antiquated treatment. A 1995 meta-analysis found a nonsignificant reduction in risk of death for postoperative cisplatin-based chemotherapy. Since then, a new generation of randomized phase III trials have been conducted, some of which have reported a benefit for chemotherapy in the adjuvant setting. The role of postoperative radiation therapy remains to be defined. It may not be beneficial in early-stage NSCLC but still may have utility in stage IIIA disease. Improvement in survival outcomes from adjuvant treatment are likely to result from the evaluation of novel agents, identification of tumor markers predictive of disease relapse, and definition of factors that determine sensitivity to therapeutic agents. Some of the molecularly targeted agents such as the angiogenesis and epidermal growth factor receptor inhibitors are being incorporated into clinical trials. Preliminary results with gene-expression profiles and lung cancer proteomics have been promising. These techniques may be used to create prediction models to identify patients at risk for disease relapse. Molecular markers such as ERCC1 may determine response to treatment. All of these innovations will hopefully increase cure rates for lung cancer patients by maximizing the efficacy of adjuvant therapy.