scout

Esophageal Cancer

Latest News


CME Content


Turmeric, or curcumin (diferuloylmethane), may be a favorable agent for the prevention and treatment of esophageal cancer, according to researchers at the Cork Cancer Research Center and Mercy University Hospital in Cork, Ireland. The authors noted that turmeric was able to induce cell death by a mechanism that is not reliant on apoptosis induction.

BARRX Medical, Inc, a global technology leader in treating Barrett's esophagus, announced the publication of two related European trials that report a 100% eradication rate for early esophageal cancer and precancerous dysplasia using endoscopic resection followed by ablation therapy with the HALO ablation system. Barrett's esophagus is a complication of gastroesophageal reflux disease (GERD) and is a known risk factor for esophageal cancer, the fastest growing cancer in the Western world.

Extracts of black raspberries might protect Barrett's esophagus patients against esophageal cancer and also might shift premalignant oral lesions from progression to squamous cell carcinoma (SCC) back toward normal differentiation

Barrett's esophagus represents replacement of normal distal esophageal squamous epithelium with specialized columnar epithelium containing goblet cells. Typically arising in the setting of chronic gastroesophageal reflux disease, the presence of Barrett's esophagus carries a 50- to 100-fold increased risk of developing esophageal cancer. Risk factors include male sex, smoking history, obesity, Caucasian ethnicity, age > 50 and > 5-year history of reflux symptoms. Aggressive medical or surgical antireflux therapy may ameliorate symptoms, but have not yet been proven to affect the risk of developing esophageal adenocarcinoma in randomized trials. Although dysplasia is an imperfect biomarker for the development of subsequent malignancy, random sampling of esophageal tissue for dysplasia remains the clinical standard. There have been no studies to establish that endoscopic screening/surveillance programs decrease the rates of death from cancer. Fit patients with Barrett's esophagus and high-grade dysplasia should undergo esophagectomy to prevent the risk of developing esophageal adenocarcinoma. For non–operative candidates, endoscopic ablative approaches may represent a reasonable therapeutic alternative.

Barrett's esophagus represents replacement of normal distal esophageal squamous epithelium with specialized columnar epithelium containing goblet cells. Typically arising in the setting of chronic gastroesophageal reflux disease, the presence of Barrett's esophagus carries a 50- to 100-fold increased risk of developing esophageal cancer. Risk factors include male sex, smoking history, obesity, Caucasian ethnicity, age > 50 and > 5-year history of reflux symptoms. Aggressive medical or surgical antireflux therapy may ameliorate symptoms, but have not yet been proven to affect the risk of developing esophageal adenocarcinoma in randomized trials. Although dysplasia is an imperfect biomarker for the development of subsequent malignancy, random sampling of esophageal tissue for dysplasia remains the clinical standard. There have been no studies to establish that endoscopic screening/surveillance programs decrease the rates of death from cancer. Fit patients with Barrett's esophagus and high-grade dysplasia should undergo esophagectomy to prevent the risk of developing esophageal adenocarcinoma. For non–operative candidates, endoscopic ablative approaches may represent a reasonable therapeutic alternative.

Barrett's esophagus represents replacement of normal distal esophageal squamous epithelium with specialized columnar epithelium containing goblet cells. Typically arising in the setting of chronic gastroesophageal reflux disease, the presence of Barrett's esophagus carries a 50- to 100-fold increased risk of developing esophageal cancer. Risk factors include male sex, smoking history, obesity, Caucasian ethnicity, age > 50 and > 5-year history of reflux symptoms. Aggressive medical or surgical antireflux therapy may ameliorate symptoms, but have not yet been proven to affect the risk of developing esophageal adenocarcinoma in randomized trials. Although dysplasia is an imperfect biomarker for the development of subsequent malignancy, random sampling of esophageal tissue for dysplasia remains the clinical standard. There have been no studies to establish that endoscopic screening/surveillance programs decrease the rates of death from cancer. Fit patients with Barrett's esophagus and high-grade dysplasia should undergo esophagectomy to prevent the risk of developing esophageal adenocarcinoma. For non–operative candidates, endoscopic ablative approaches may represent a reasonable therapeutic alternative.

Esophageal, gastroesophageal junction, and gastric cancers are underpublicized but are frequently lethal, and gastroesophageal junction adenocarcinomas are increasingly common diseases in the United States and around the world. Although often grouped together in studies of chemotherapy, clear distinctions can be made in the locoregional therapy of these diseases. Esophageal squamous cell carcinomas may be treated with surgery or radiation with concurrent chemotherapy, whereas esophageal adenocarcinomas and gastroesophageal junction adenocarcinomas are often treated with all three treatment modalities. Over the past several years, it has become increasingly evident that gastric cancer is a disease that is potentially sensitive to chemotherapy. In the perioperative setting—at least in the Western world—chemotherapy and sometimes radiation are applied. However, the optimal chemotherapy for advanced gastric or esophageal cancer remains unsettled, and there is no single standard regimen. Several new chemotherapy agents have demonstrated activity in these diseases, but the best chemotherapy remains to be determined. This paper will review the role of chemotherapy in gastroesophageal cancers.

Esophageal, gastroesophageal junction, and gastric cancers are underpublicized but are frequently lethal, and gastroesophageal junction adenocarcinomas are increasingly common diseases in the United States and around the world. Although often grouped together in studies of chemotherapy, clear distinctions can be made in the locoregional therapy of these diseases. Esophageal squamous cell carcinomas may be treated with surgery or radiation with concurrent chemotherapy, whereas esophageal adenocarcinomas and gastroesophageal junction adenocarcinomas are often treated with all three treatment modalities. Over the past several years, it has become increasingly evident that gastric cancer is a disease that is potentially sensitive to chemotherapy. In the perioperative setting—at least in the Western world—chemotherapy and sometimes radiation are applied. However, the optimal chemotherapy for advanced gastric or esophageal cancer remains unsettled, and there is no single standard regimen. Several new chemotherapy agents have demonstrated activity in these diseases, but the best chemotherapy remains to be determined. This paper will review the role of chemotherapy in gastroesophageal cancers.

Esophageal, gastroesophageal junction, and gastric cancers are underpublicized but are frequently lethal, and gastroesophageal junction adenocarcinomas are increasingly common diseases in the United States and around the world. Although often grouped together in studies of chemotherapy, clear distinctions can be made in the locoregional therapy of these diseases. Esophageal squamous cell carcinomas may be treated with surgery or radiation with concurrent chemotherapy, whereas esophageal adenocarcinomas and gastroesophageal junction adenocarcinomas are often treated with all three treatment modalities. Over the past several years, it has become increasingly evident that gastric cancer is a disease that is potentially sensitive to chemotherapy. In the perioperative setting—at least in the Western world—chemotherapy and sometimes radiation are applied. However, the optimal chemotherapy for advanced gastric or esophageal cancer remains unsettled, and there is no single standard regimen. Several new chemotherapy agents have demonstrated activity in these diseases, but the best chemotherapy remains to be determined. This paper will review the role of chemotherapy in gastroesophageal cancers.

Confocal laser endomicroscopy, a new technology that permits high-resolution subsurface microscopic imaging of living tissue during routine endoscopy, can facilitate the diagnosis of esophageal and gastric cancers, according to a recent report. "Endomicroscopy allows you to make an in vivo histology during ongoing endoscopy," Ralf Kiesslich, MD, PhD, said at the 2006 Gastrointestinal Cancers Symposium (General Session I).

Based on positive results from the Radiation Therapy Oncology Group (RTOG) 85-01 trial, the conventional nonsurgical treatment of esophageal carcinoma is combined-modality therapy. Dose intensification of the RTOG 85-01 regimen, examined in the Intergroup (INT)-0123/RTOG 94-05 trial, did not improve local control or survival. Areas of clinical investigation include the development of combined-modality therapy regimens with newer systemic agents, the use of 18F-fluorodeoxyglucose positron-emission tomography to assist in the development of innovative radiation treatment planning techniques, and the identification of prognostic molecular markers. The addition of surgery following primary combined-modality therapy apparently does not improve survival, but this finding is controversial.

Based on positive results from the Radiation Therapy Oncology Group (RTOG) 85-01 trial, the conventional nonsurgical treatment of esophageal carcinoma is combined-modality therapy. Dose intensification of the RTOG 85-01 regimen, examined in the Intergroup (INT)-0123/RTOG 94-05 trial, did not improve local control or survival. Areas of clinical investigation include the development of combined-modality therapy regimens with newer systemic agents, the use of 18F-fluorodeoxyglucose positron-emission tomography to assist in the development of innovative radiation treatment planning techniques, and the identification of prognostic molecular markers. The addition of surgery following primary combined-modality therapy apparently does not improve survival, but this finding is controversial.

Based on positive results from the Radiation Therapy Oncology Group (RTOG) 85-01 trial, the conventional nonsurgical treatment of esophageal carcinoma is combined-modality therapy. Dose intensification of the RTOG 85-01 regimen, examined in the Intergroup (INT)-0123/RTOG 94-05 trial, did not improve local control or survival. Areas of clinical investigation include the development of combined-modality therapy regimens with newer systemic agents, the use of 18F-fluorodeoxyglucose positron-emission tomography to assist in the development of innovative radiation treatment planning techniques, and the identification of prognostic molecular markers. The addition of surgery following primary combined-modality therapy apparently does not improve survival, but this finding is controversial.

Compared with surgery alone, the triple combination of chemotherapy, radiation therapy, and surgery is associated with a more than doubling of overall survival and a more than tripling of progression-free survival in patients with resectable esophageal cancer, according to a randomized trial presented at the 2006 Gastrointestinal Cancers Symposium (abstract 4).

Esophageal cancer frequently expresses cyclooxygenase-2 (COX-2)enzyme. In preclinical studies, COX-2 inhibition results in decreasedcell proliferation and potentiation of chemotherapy and radiation. Wereport preliminary results of a phase II study conducted by the HoosierOncology Group in patients with potentially resectable esophageal cancer.All patients received cisplatin at 75 mg/m2 given on days 1 and 29and fluorouracil (5-FU) at 1,000 mg/m2 on days 1 to 4 and 29 to 32with radiation (50.4 Gy beginning on day 1). Celecoxib (Celebrex) wasadministered at 200 mg orally twice daily beginning on day 1 untilsurgery and then at 400 mg orally twice daily until disease progressionor unexpected toxicities, or for a maximum of 5 years. Esophagectomywas performed 4 to 6 weeks after completion of chemoradiation. Theprimary study end point was pathologic complete response (pCR). Secondaryend points included response rate, toxicity, overall survival, andcorrelation between COX-2 expression and pCR. Thirty-one patientswere enrolled from March 2001 to July 2002. Respective grade 3/4 toxicitieswere experienced by 58%/19% of patients, and consisted of granulocytopenia(16%), nausea/vomiting (16%), esophagitis (10%), dehydration(10%), stomatitis (6%), and diarrhea (3%). Seven patients (24%)required initiation of enteral feedings. There have been seven deathsso far, resulting from postoperative complications (2), pulmonary embolism(1), pneumonia (1), and progressive disease (3). Of the 22 patients(71%) who underwent surgery, 5 had pCR (22%). We concludethat the addition of celecoxib to chemoradiation is well tolerated. ThepCR rate of 22% in this study is similar to that reported with the use ofpreoperative chemoradiation in other trials. Further follow-up is necessaryto assess the impact of maintenance therapy with celecoxib onoverall survival.