scout

Hematologic Oncology

Latest News


CME Content


Anemia is a widely prevalent complication among cancer patients. At the time of diagnosis, 30% to 40% of patients with non-Hodgkin lymphoma or Hodgkin lymphoma and up to 70% of patients with multiple myeloma are anemic; rates are higher among persons with myelodysplastic syndromes. Among patients with solid cancers or lymphomas, up to half develop anemia following chemotherapy. For almost 2 decades, erythropoiesis-stimulating agents (ESAs) were the primary treatment for cancer-related anemia. However, reassessments of benefits and risks of ESAs for cancer-associated anemia have occurred internationally. We reviewed guidelines and notifications from regulatory agencies and manufacturers, reimbursement policies, and utilization for ESAs in the cancer and chronic kidney disease settings within the United States, Europe, and Canada. In 2008 the US Food and Drug Administration (FDA) restricted ESAs from cancer patients seeking cure. Reimbursement is limited to hemoglobin levels < 10 g/dL. In the United States, ESA usage increased 340% between 2001 and 2006, and decreased 60% since 2007. The European Medicines Agency (EMEA) recommended that ESA benefits do not outweigh risks. In Europe between 2001 and 2006, ESA use increased 51%; since 2006, use decreased by 10%. In 2009, Canadian manufacturers recommended usage based on patient preferences. In Canada in 2007, approximately 20% of anemic cancer patients received ESAs, a 20% increase since 2004. In contrast to Europe, where ESA use has increased over time, reassessments of ESA-associated safety concerns in the United States have resulted in marked decrements in ESA use among cancer patients.

Hematopoietic malignancies account for 6% to 8% of new cancers diagnosed annually. In the year 2009, an estimated 44,790 new cases of leukemia were diagnosed, and 21,870 deaths were attributable to leukemias of all types. The total age-adjusted incidence of leukemia, including both acute and chronic forms, is 9.6 per 100,000 population; the incidence of acute lymphoblastic leukemia (ALL) is 1.5 per 100,000 and of acute myelogenous leukemia (AML) is 2.7 per 100,000 population.

The incidence rates of non-Hodgkin lymphoma (NHL) in the United States have almost doubled between 1970 and 1990, representing one of the largest increases of any cancer. Although the overall incidence rates of NHL began to stabilize in the late 1990s, the temporal trends varied by histologic subtype. Some of this increase may be artifactual, resulting from improved diagnostic techniques and access to medical care, or directly related to the development of NHL in 25- to 54-year-old men with human immunodeficiency virus (HIV) infection. However, additional factors must be responsible for this unexpected increase in frequency of NHL that has been observed throughout the United States.

In 2009 approximately 8,510 new cases of Hodgkin lymphoma (HL) will be diagnosed in the United States. Over the past 4 decades, advances in radiation therapy and the advent of combination chemotherapy have tripled the cure rate of patients with HL. In 2009, more than 80% of all newly diagnosed patients can expect a normal, disease-free life span.

Peripheral T-cell lymphomas (PTCLs) are uncommonly encountered malignancies in the United States, and hepatosplenic T-cell lymphoma (HSTCL), subcutaneous panniculitis-like T-cell lymphoma (SPTCL), and enteropathy-type T-cell lymphoma (ETTCL) are rare subtypes of PTCLs that often present with primarily extranodal disease. Despite the fact that these tumors have distinct clinical and pathologic features, they are often diagnosed after significant delay. The combination of delay in diagnosis with ineffective therapies has resulted in a poor prognosis in most cases. Techniques that identify T-cell receptor gene rearrangements and flow cytometry that can identify characteristic immunophenotypes have guided our understanding of the underlying cell of origin of these rare PTCLs. As knowledge regarding the biology of these lymphomas increases alongside the development of newer therapeutics with novel mechanisms, clinicians must accordingly improve their familiarity with the clinical settings in which these rare malignancies arise as well as the pathologic features that make them unique

Despite the significant progress that has occurred in recent decades in the treatment of many advanced malignancies, skeletal morbidity remains a major problem for patients affected by cancers that metastasize to or grow primarily within bone.[1] Thus as patients with a variety of malignancies survive longer, therapies to limit cancer-associated as well as treatment-associated skeletal complications have become increasingly important for the provision of optimal patient care.

Adult T-cell leukemia/lymphoma (ATL) is defined as a histologically or cytologically proven peripheral T-cell malignancy associated with a retrovirus, human T-cell lymphotropic virus type I (HTLV-1).[1] Southwestern Japan is the district with the highest prevalence of HTLV-1 infection and the highest incidence of ATL in the world. A high prevalence of HTLV-1 infection is also found in the Caribbean islands, tropical Africa, South America, and northern Oceania.

Eltrombopag (Promacta) is the first orally absorbed, small-molecule, thrombopoietin receptor (TPO-R) agonist, approved (on November 20, 2008) by the US Food and Drug Administration (FDA) for the treatment of chronic immune thrombocytopenia (ITP) in patients who have relapsed following treatment with corticosteroids, immunoglobulins, and/or splenectomy.

One of the greatest challenges facing the physician caring for patients with chronic lymphocytic leukemia (CLL) is the heterogeneity of this disease. Over the past decade, there have been major advances in understanding the pathophysiology of CLL, and in the identification of biomarkers that are helpful to predict the clinical course for individual patients. Over the same period, the available therapeutic options have developed dramatically, exemplified by the introduction of combination therapy with purine analogs and monoclonal antibodies, resulting in significant opportunities to induce complete remission (CR) in CLL patients.

Chronic lymphocytic leukemia (CLL) is a heterogeneous disease with an extremely variable course. Survival after diagnosis can range from months to decades. As the pathogenesis of the disease is increasingly understood, we begin to unfold the molecular patterns that define the different prognostic subgroups and to develop strategies to predict the clinical course.

Lymphoblastic lymphoma (LBL) is a rare disease, comprising about 2% of all non-Hodgkin lymphomas (NHLs) in adults.[1] It is a highly aggressive subtype of lymphoma, most commonly of precursor T-cell origin, occurring most frequently in adolescents and young adults, with male predominance and frequent mediastinal, bone marrow, and central nervous system (CNS) involvement.

In their Areas of Confusion article, “Management of Relapsed Mantle Cell Lymphoma: Still a Treatment Challenge,” Ruan et al attempt to make the case that the relative merits of different upfront approaches for mantle cell lymphoma (MCL) are difficult to appreciate due to the differences in eligible patient populations and limited randomized data.

Dr. Ruan and colleagues provide an excellent summary of available treatment options, as well as new drugs on the horizon, for the management of relapsed mantle cell lymphoma (MCL). As the authors emphasize, treatment of relapsed MCL is strongly influenced by the patient’s first-line therapy and needs to be individualized based on both patient and disease characteristics.

On August 22, 2008, the US Food and Drug Administration (FDA) granted marketing approval (licensure) to romiplostim (Nplate, Amgen Inc) for the treatment of thrombocytopenia in patients with chronic immune (idiopathic) thrombocytopenic purpura (ITP) who have had an insufficient response to corticosteroids, immunoglobulins, or splenectomy.

Romiplostim (Nplate) was the first thrombopoietin (TPO) receptor agonist to receive regulatory approval by the US Food and Drug Administration (FDA) for treatment of thrombocytopenia in patients with chronic immune (idiopathic) thrombocytopenic purpura (ITP) who have had an insufficient response to corticosteroids, immunoglobulins, or splenectomy.